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We introduce a time-dependent potential-functional embedding theory (TD-PFET), in which atoms
are grouped into subsystems. In TD-PFET, subsystems can be propagated by different suitable
time-dependent quantum mechanical methods and their interactions can be treated in a seamless,
first-principles manner. TD-PFET is formulated based on the time-dependent quantum mechanics
variational principle. The action of the total quantum system is written as a functional of the time-
dependent embedding potential, i.e., a potential-functional formulation. By exploiting the Runge-
Gross theorem, we prove the uniqueness of the time-dependent embedding potential under the con-
straint that all subsystems share a common embedding potential. We derive the integral equation
that such an embedding potential needs to satisfy. As proof-of-principle, we demonstrate TD-PFET
for a Na4 cluster, in which each Na atom is treated as one subsystem and propagated by time-
dependent Kohn-Sham density functional theory (TDDFT) using the adiabatic local density approx-
imation (ALDA). Our results agree well with a direct TDDFT calculation on the whole Na4 cluster
using ALDA. We envision that TD-PFET will ultimately be useful for studying ultrafast quantum
dynamics in condensed matter, where key regions are solved by highly accurate time-dependent
quantum mechanics methods, and unimportant regions are solved by faster, less accurate methods.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4869538]

I. INTRODUCTION

Time-dependent quantum mechanics forms the corner-
stone for our understanding and prediction of electron dynam-
ics in materials, e.g., exciton creation and separation in solar
cells,1 surface-enhanced Raman spectroscopy,2 and biosens-
ing based on exciton-plasmon interactions,3 to name only
a few applications. However, sophisticated time-dependent
correlated-wavefunction (TDCW) techniques such as the
time-dependent coupled cluster method4 are prohibitively
expensive. To correctly describe the sequential double-
ionization of helium even requires explicit treatment of the
full time-dependent two-particle Schrödinger equation.5 Such
an approach is unfeasible already for three electrons. To effi-
ciently propagate the time-dependent Schrödinger equation,
time-dependent density functional theory (TDDFT) based
on the Runge-Gross theorem was introduced.6 Practical ap-
plications of TDDFT employing the adiabatic local density
approximation (ALDA) unfortunately share many problems
with ground state time-independent DFT,7, 8 such as the self-
interaction error9 and the lack of a derivative discontinuity
in the exchange-correlation (XC) potential.10 Additionally,
constructing a time-dependent XC functional with memory
is very challenging.11 To overcome these difficulties, herein

a)chenh@lanl.gov
b)eac@princeton.edu

we formulate a theory capable of describing a region (or re-
gions) of interest in a complex system with an accurate ab
initio time-dependent quantum mechanics method. A less ex-
pensive, lower-level method could then be used to treat the
surrounding regions, giving rise to a time-dependent embed-
ding theory.

Various embedding theories have been developed in
the past for time-independent quantum systems. For in-
stance, embedding methods employing the Green’s function
were developed to study chemisorption12–14 and defects in
semiconductors.15 Inglesfield solved for the region of inter-
est utilizing the Green’s function on its boundary.16 Density-
functional embedding theory (DFET), which extends DFT
from a single quantum system to multiple quantum systems,
is in principle exact, and has been extensively developed in
the last two decades. In DFET, one partitions the total elec-
tron density into subsystem electron densities. The interac-
tion (embedding potential) between subsystems is calculated
according to a subsystem reformulation of DFT.17–20 The em-
bedding potential is often evaluated with the help of approxi-
mate kinetic energy density functionals (KEDFs).17–20 To im-
prove the accuracy of embedding potential, exact KEDF po-
tential can calculated by directly inverting the Kohn-Sham
equations,21–24 or by level shifting subsystem orbitals.25 It has
recently been realized that the uniqueness of the embedding
potential is essential for making DFET tractable.26, 27 One
common way to perform DFET is DFT-in-DFT embedding,

0021-9606/2014/140(12)/124113/12/$30.00 © 2014 AIP Publishing LLC140, 124113-1
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in which all subsystems are treated within DFT.17–19, 25 In
CW-in-DFT embedding, key regions are treated using a CW
method, while the environment is treated using DFT.20, 27–33

CW-in-DFT embedding using spin-dependent embedding po-
tentials has also been demonstrated.34 We recently intro-
duced a self-consistent potential-functional embedding the-
ory (PFET), in which one directly minimizes the total energy
with respect to the embedding potential (a unique property
for a given system partitioning) instead of with respect to the
electron densitiy.35 PFET makes it possible to perform seam-
less embedding simulations for molecules and materials in a
divide-and-conquer manner, allowing charge transfer between
subsystems. Reviews of DFET36, 37 and PFET,38 as well as an
overview of various embedding schemes are available.36

For time-dependent quantum systems, Inglesfield devel-
oped a time-dependent embedding theory39, 40 that matches
one-electron wavefunctions across adjacent regions. Several
time-dependent embedding theories have been developed to
study the interactions between molecules and metals: met-
als often have been represented with simplified models,41 or
the interactions between molecules and metals have been de-
scribed by classical electrodynamics.42–47 More sophisticated
quantum mechanical approaches have appeared recently. By
treating the plasmons in metals as a perturbation, Masiello
and Schatz developed a many-body perturbation theory ap-
proach to simulate surface-enhanced Raman spectroscopy.48

Chen et al.49 thereafter constructed a multi-scale theory in
which the scattering response function of the environment
was calculated and then used as input for subsequent time-
dependent simulations of molecules. They assumed that the
scattering response function was uniformly distributed around
the molecule.

Excitation energies in molecules are now routinely cal-
culated based on TD-DFT linear response theory.50, 51 Sub-
system formulation of TD-DFT linear response has also been
extensively developed.52–57 In the present work, we introduce
a flexible subsystem formulation of time-dependent quantum
processes that is not restricted to the linear response regime:
general time-dependent potential-functional embedding the-
ory (TD-PFET), which partitions the total system into several
subsystems. In the simplest case, we partition a system subject
to a time-dependent external potential into two subsystems I
(a region of interest) and II (its environment) [Fig. 1(a)]. It is
often unfeasible to treat a total system using a highly accurate
quantum mechanics method due to very high computational
cost. One goal of TD-PFET would be to study subsystem I us-
ing an accurate time-dependent quantum mechanics method,
and to treat the subsystem II using a less accurate but faster
method. By employing such a divide-and-conquer approach,
we may be able to gain a reliable picture of the quantum dy-
namics in subsystem I, while limiting the computational cost.
Currently, we do not permit charge transfer between subsys-
tems but restrict ourselves to intra-subsystem excitations.

The basic idea in TD-PFET is to replace the interaction
between subsystems with a time-dependent embedding po-
tential. Each subsystem is propagated with the embedding
potential as an additional time-dependent external potential.
The action of the total system is formulated as a functional
of the time-dependent embedding potential, which is solved

FIG. 1. (a) Schematic of the total system under an external time-dependent
field such as a laser. In TD-PFET, the system is partitioned into subsystems,
here for illustration just two of them, I and II. They can then be treated by
different time-dependent quantum mechanics methods if desirable. (b) Ge-
ometry of a planar Na4 cluster in the x-y plane. The laser points in the y
direction. The distance between Natop and Nabottom is 6.51 Å. The distance
between the Naleft and Naright is 3.05 Å. In our TD-PFET simulations, each
Na atom is treated as one subsystem.

for by satisfying the time-dependent variational principle. Un-
like Inglesfield’s approach,39 we do not explicitly define ge-
ometric boundaries to partition the total system into subsys-
tems. Upon grouping atoms into subsystems, the partitioning
of the total time-dependent electron density is automatically
achieved. The present work naturally extends our recent work
on PFET35 to time-dependent quantum phenomena.

TD-PFET presented here provides an ab initio, self-
consistent, and seamless framework to study different regions
of materials with different time-dependent quantum mechan-
ics methods. For example, using TD-PFET, it will become
possible to study multiple regions of interest in materials
and molecules with suitable TDCW methods, while treating
the environment with lower-level and faster time-dependent
quantum mechanics methods, such as TDDFT/ALDA. We re-
fer to such a scheme as TDCW-in-TDDFT embedding. Here,
in addition to formulating the theory, as a first proof of princi-
ple we demonstrate TDDFT-in-TDDFT embedding for a Na4

cluster in the presence of a laser field, with each Na atom
treated as a subsystem within TDDFT/ALDA. We show that
our TD-PFET is able to reproduce the time evolution of the
dipole moment and other time-dependent quantities in good
agreement with a benchmark TDDFT/ALDA calculation on
the entire Na4 cluster.

This paper is organized as follows. We present the for-
malism of TD-PFET based on the quantum mechanics vari-
ational principle. An integral equation describing the time-
evolution of the time-dependent embedding potential is then
derived. The uniqueness of this time-dependent embedding
potential is proved in the Appendix. We discuss how to ap-
proximate several key terms in the integral equation to make
it easier to solve, and show how to greatly simplify it for
the case of TDDFT/ALDA-in-TDDFT/ALDA embedding. To
calculate the time-dependent Kohn-Sham effective potential
for a given v-representable time-dependent electron density,
we develop a penalty-function based method. We demonstrate
our TD-PFET on a Na4 cluster, where each Na atom is treated
as one subsystem. Finally we compare TD-PFET to a recently
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developed “fragment-time-dependent density functional the-
ory” and offer concluding remarks.

II. THEORY

A. Formalism of TD-PFET

We consider a time-dependent quantum system that con-
tains M atoms with coordinates �R1. . . �RM and nuclear charges
Z1. . . ZM. The system contains Me electrons and is driven by
an external time-dependent potential vtd (�r, t). The electronic
Hamiltonian is

Ĥtot (t) = −
Me∑
i=1

1

2
∇2

i −
Me∑
i=1

M∑
j=1

Zj

|�ri − �Rj |

+
Me∑
i=1

Me∑
j<i

1

|�ri − �rj | +
Me∑
i=1

vtd (�ri, t). (1)

In TD-PFET, we partition the total system into N subsys-
tems by grouping the ionic potentials of all M atoms into
K = 1, . . . , N subsystems, each containing MeK electrons and
MK atoms. Static PFET allows for adjusting the MeK by let-
ting all subsystems share a common chemical potential. In the
time-dependent embedding case, the system is not in equilib-
rium, therefore we no longer have a constant chemical poten-
tial over all space. The current formalism thus uses fixed sub-
system electron numbers MeK during TD-PFET simulations,
which thus prevents TD-PFET from studying electron transfer
between subsystems.

The Hamiltonian of subsystem K is defined as

ĤK (t) = −
MeK∑
i=1

1

2
∇i

2 −
MeK∑
i=1

MK∑
j=1

Zj

|�ri − �Rj |
+

MeK∑
i=1

MeK∑
j<i

1

|�ri − �rj |

+
MeK∑
i=1

(vtd (�ri, t) + uemb,K (�ri, t)), (2)

where
∑N

K=1 MeK = Me and
∑N

K=1 MK = M . In Eq. (2),
we have added the embedding potential uemb,K (�r, t) to rep-
resent the interaction between subsystem K and the rest of
the system. In principle, uemb,K (�r, t) is subsystem-dependent.
However, similar to our previous work on PFET,35 we ap-
ply the constraint that all subsystems share a common time-
dependent embedding potential (denoted as uemb(�r, t)), i.e.,
we replace uemb,K (�r, t) with uemb(�r, t) in Eq. (2). As shown
in the Appendix, such a constraint guarantees the uniqueness
of uemb(�r, t).

The Runge-Gross theorem ensures that the time evolu-
tion of the total system is completely determined by ρtot (�r, t)
and the initial many-body wavefunction |� tot(t = 0)〉 of the
total system. In our TD-PFET ansatz, subsystem electron
densities {ρK (�r, t)} and the total electron density ρtot (�r, t)
= ∑N

K=1 ρK (�r, t) are determined by uemb(�r, t). Together,
uemb(�r, t) and |� tot(t = 0)〉 determine the time evolution of the
total system, which makes all quantities in TD-PFET func-
tionals of uemb(�r, t) and |� tot(t = 0)〉; i.e., we follow the
potential-functional formalism introduced in PFET.35

The central question now becomes how to solve for such
a time-dependent embedding potential. To derive the integral

equation that uemb(�r, t) is required to satisfy, we decompose
the action of the total system as

Atot =
∑
K

AK +
(

Atot −
∑
K

AK

)
, (3)

where Atot and AK are respectively the actions of the total
system and subsystem K, defined in real-time (from t = 0
to t = T)

Atot [uemb]

=
T∫

0

dt ′〈�tot (t
′)[uemb]|i∂t ′ − Ĥtot (t

′)|�tot (t
′)[uemb]〉 (4)

and

AK [uemb]=
T∫

0

dt ′〈�K (t ′)[uemb]|i∂t ′ − ĤK (t ′)|�K (t ′)[uemb]〉.

(5)
The many-body wavefunction and Hamiltonian of the to-
tal system (of subsystem K) are respectively |� tot(t)〉 and
Ĥtot (t)(|�K(t)〉 and ĤK (t)). As discussed above |�K(t)〉 is
determined by uemb(�r, t). |� tot(t)〉 is a functional of the to-
tal electron density ρtot (�r, t) which is the superposition of
all subsystem electron densities ρK (�r, t). Since ρK (�r, t) is a
functional of uemb(�r, t), |�tot (t)〉 is an implicit functional of
uemb(�r, t). In Eq. (3), the interaction action Aint is formally
defined as

Aint ≡ Atot −
∑
K

AK. (6)

In practical TD-PFET simulations, Aint needs to be approxi-
mated, as we discuss in Sec. II B.

In our previous time-independent embedding theory, i.e.,
PFET,35 the embedding potential was solved for by directly
minimizing the total energy with respect to the embedding
potential. However, such a method cannot be used for TD-
PFET, because there is no variational principle for the total
system’s action with respect to the embedding potential, i.e.,
δAtot

δuemb
�= 0.58 This can be understood by writing down the vari-

ation of Atot with respect to δuemb(�r, t),58

δAtot =
T∫

0

dt ′〈δ�tot (t
′)|i∂t ′ − Ĥtot (t

′)|�tot (t
′)〉

+
T∫

0

dt ′〈�tot (t
′)|i∂t ′ − Ĥtot (t

′)|δ�tot (t
′)〉,

=
T∫

0

dt ′〈δ�tot (t
′)|i∂t ′ − Ĥtot (t

′)|�tot (t
′)〉

+
T∫

0

dt ′〈[i∂t ′ − Ĥtot (t
′)]�tot (t

′)|δ�tot (t
′)〉

+i〈�tot (t
′) | δ�tot (t

′)〉|T0 , (7)

where δ� tot(t) is caused by a variation of uemb(�r, t) at an ear-
lier time. For the second equality in Eq. (7), an integration by
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parts is performed,

T∫
0

dt ′〈�tot (t
′)|i∂t ′ |δ�tot (t

′)〉

= i〈�tot (t
′)|δ�tot (t

′)〉|T0 − i

T∫
0

dt ′〈∂t ′�tot (t
′)|δ�tot (t

′)〉.

The correct uemb(�r, t) yields the |� tot(t)〉 that satisfies the
time-dependent Schrödinger equation, i.e., (i∂t − Ĥtot (t))
�tot (t) = 0. Consequently, together with δ� tot(t = 0) = 0,
Eq. (7) is reduced to

δAtot [uemb]

δuemb(�r, t) = i

〈
�tot,T [uemb]

∣∣∣∣∣δ�tot,T [uemb]

δuemb(�r, t)

〉
, (8)

for any t ≤ T. � tot, T is short for � tot(t = T). In Eq. (8), we note
that the variation of Atot with respect to the correct uemb(�r, t)
does not vanish, but is related to a boundary term evaluated
at t = T. As pointed out in Ref. 58, it is this boundary term
that preserves causality in TDDFT. Equation (8) is therefore a
necessary condition for finding the correct uemb(�r, t) to yield
the |� tot(t)〉 satisfying (i∂t − Ĥtot (t))�tot (t) = 0.

We now prove that Eq. (8) is also a sufficient condition.
Let’s assume that uemb(�r, t) yields a different v-representable
� tot

′(t) satisfying (i∂t − Ĥtot
′(t))�tot

′(t) = 0, with Ĥtot
′(t)

being different from Ĥtot (t). Since Eq. (8) holds for uemb(�r, t)
for 0 ≤ t ≤ T, Eq. (7) reduces to

T∫
0

dt ′〈δ�tot
′(t ′)|i∂t ′ − Ĥtot (t

′)|�tot
′(t ′)〉 + c.c. = 0, (9)

for any variation δuemb(�r, t), where c.c. is short for
the complex conjugate. Denoting �V̂ (t) = Ĥ ′

tot (t) − Ĥtot (t),

Eq. (9) becomes

0 =
T∫

0

dt ′〈δ�tot
′(t ′)|�V̂ (t ′)|�tot

′(t ′)〉 + c.c.

=
T∫

0

dt ′
∫

dr ′3δρtot
′(�r ′, t ′)�V (�r ′, t ′), (10)

with ρtot
′(�r, t) being the electron density associated with

� tot
′(t). Our goal is to show that � tot

′(t) is the solution of
(i∂t − Ĥtot (t))�tot

′(t) = 0, i.e., �V (�r, t) is a time-dependent
constant [�V (�r, t) ≡ Q(t)], which requires that δρtot

′(�r, t) in
Eq. (10) can be arbitrary.

As shown in the Appendix, ρtot
′(�r, t) determines

uemb(�r, t) up to a time-dependent function c(t). We focus on a
subset of uemb(�r, t), denoted as Ug

emb, in which such an arbi-
trary gauge freedom c(t) is removed:

∫
dr3u

g

emb(�r, t) = 0 and∫
dr3δu

g

emb(�r, t) = 0 for any t and any u
g

emb ∈ Ug

emb. We can
map δρ tot

′(t) to δu
g

emb(�r, t) by the time-dependent linear re-
sponse

δρtot
′(�r, t) =

t∫
0

dt ′
∫

d�r ′χ (�r, t ; �r ′, �t ′)δug

emb(�r ′, t ′). (11)

To show that δρtot
′(�r, t) in Eq. (10) can be arbitrary, we need

to prove that χ is invertible. We show this for the case of dis-
crete space and time variables. We discretize both the spatial
and time coordinates as {r1, r2, . . . , rM} and {t1, t2, . . . , tD},
respectively. Equation (11) then reduces to the matrix repre-
sentation

δρtot
′ = χδug

emb,

where

δρtot
′ = [

δρtot r1,t1
′, δρtot r2,t1

′, . . . , δρtot rM ,t1
′, . . . , δρtot r1,tD

′, δρtot r2,tD
′, . . . , δρtot rM ,tD

′]T
,

δu
g
emb = [

δu
g

emb r1,t1
, δu

g

emb r2,t1
, . . . , δu

g

emb rM,t1
, . . . , δu

g

emb r1,tD
, δu

g

emb r2,tD
, . . . , δu

g

emb rM,tD

]T
,

χ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

χt1t1 0 · · · 0

χt2t1 χt2t2 · · · 0

...
...

. . . 0

χtDt1 χtDt2 · · · χtDtD

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

χ titj
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

χr1ti ,r1tj χr1ti ,r2tj · · · χr1ti ,rM tj

χr2ti ,r1tj χr2ti ,r2tj · · · χr2ti ,rM tj

...
...

. . .
...

χrMti ,r1tj χrM ti ,r2tj · · · χrMti ,rM tj

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

for ti ≥ tj .

If the null space of χ is non-empty, a nonzero v ∈ Ug

emb would
exist such that χv = 0, due to the fact that the linearly inde-
pendent basis in Ug

emb is of the same dimension as χ , i.e.,
D × M. Thus both δug

emb and (δug
emb + v) would give the

same δρtot
′, which is contradictory to the one-to-one mapping

between u
g

emb(�r, t) and ρtot
′(�r, t) proved in the Appendix.

Consequently, the linear response matrix χ is of full rank
D × M and invertible. Any arbitrary δρtot

′ can then be ob-
tained by δug

emb = χ−1δρtot
′, which indicates that Eq. (10)

can only hold for �V (�r, t) = 0. We have thus proven that
Eq. (8) is a sufficient condition for solving for the correct
uemb(�r, t) for the case of discretized spatial and time coor-
dinates. Since both Atot and � tot, T are implicit functionals of
uemb(�r, t), Eq. (8) is the integral equation for uemb(�r, t), which
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is the central result of this work. The uniqueness of uemb(�r, t)
is proven in the Appendix.

The embedding potential uemb(�r, t), obtained from
Eq. (8), is a local function of time t and spatial coordinate
�r . If no approximation is used in solving Eq. (8), uemb(�r, t)
does in principle have “memory”: uemb(�r, t) is determined by
the total electron density in the past and the many-body wave-
function at t = 0. This is similar to the time-dependent Kohn-
Sham effective potential, which is also a local function of time
and spatial coordinates, but nevertheless, in principle, has the
correct “memory.”

By a procedure similar to the derivation of Eq. (8), one
can show that for subsystem K, the variation of AK with
uemb(�r, t) is given by

δAK

δuemb(�r, t) = i

〈
�K,T

∣∣∣∣∣ δ�K,T

δuemb(�r, t)

〉
− ρK (�r, t), (12)

where ρK appears due to the uemb, K term in HK [see Eq. (2)].
Equation (12) will be used in Secs. II B–II D.

B. Possible approximations in TD-PFET calculations

The goal of TD-PFET is to propagate each subsystem
with a suitable time-dependent quantum mechanics method
with the embedding potential uemb(�r, t) as an additional exter-
nal potential, while treating Aint with proper approximations.
If the exact Aint, formally defined in Eq. (6), is employed, we
just recover the total action Atot and no computational cost will
be saved. Technically, the major task in TD-PFET is to obtain
uemb(�r, t) by solving Eq. (8), which is numerically very chal-
lenging. We now discuss some ways to simplify Eq. (8) to
make it easily solvable.

We proceed by inserting the identity Eq. (3) into Eq. (8),
and obtain

∑
K

δAK

δuemb(�r, t) + δAtot

δuemb(�r, t) −
∑
K

δAK

δuemb(�r, t)

= i

〈
�tot,T

∣∣∣∣∣ δ�tot,T

δuemb(�r, t)

〉
. (13)

By the chain rule, the third term on the LHS of Eq. (13) can
be written as

δAK

δuemb(�r, t) ≡
∫∫

d�r ′dt ′
δAK

δρK (�r ′, t ′)

∣∣∣∣
uemb

δρK (�r ′, t ′)
δuemb(�r, t) − ρK,

where AK is treated as a functional of both uemb and ρK (ρK

is also a functional of uemb). The first term on the LHS of
Eq. (13) can be replaced by the identity Eq. (12), therefore
Eq. (13) becomes

∫∫
d�r ′dt ′

∑
K

δ(Atot − AK )

δρK (�r ′, t ′)

∣∣∣∣
uemb

δρK (�r ′, t ′)
δuemb(�r, t) − �B = 0,

(14)
where we have exploited the fact that Atot does not explicitly
depend on uemb(�r, t). �B is defined as

�B = i

〈
�tot,T [uemb]

∣∣∣∣ δ�tot,T [uemb]

δuemb(�r, t)
〉

−
∑
K

i

〈
�K,T [uemb]

∣∣∣∣ δ�K,T [uemb]

δuemb(�r, t)
〉
. (15)

The reason that we treat the first and the second∑
K δAK/δuemb terms in Eq. (13) differently will be ex-

plained later.
Until this point no approximation has been made and

Eq. (14) is formally exact. Any approximation made to
Eq. (14) will affect the exactness of uemb(�r, t), which in turn
will affect the time evolution of subsystems, as well as the
total system.

It is very challenging to evaluate �B, as it depends on
the boundary terms from both the total system and subsys-
tems. The second boundary term, due to subsystems, on the
right hand side (RHS) of Eq. (15), can be removed if subsys-
tems are propagated by TDDFT methods that ignore causal-
ity, such as TDDFT using ALDA.58, 59 If we also set the first
boundary term on the RHS of Eq. (15) to zero, i.e., we ig-
nore the causality of the total system, we reach �B = 0. One
may ask whether it is physical to ignore causality in the to-
tal system and the subsystems. We argue that even if each
boundary term on the RHS of Eq. (15) is nonzero, we might
still be able to approximate �B = 0 in practice. To justify
this argument, note that �B can be treated as a special in-
teraction term resulting from boundary conditions. If the ab-
solute values of these boundary terms are much smaller than
other terms, e.g., the Hartree or XC term, we expect that the
final electron dynamics would not change much by setting
�B = 0. However, such an argument should be verified nu-
merically in future TD-PFET simulations.

To find possible ways to approximate the integral on
the LHS of Eq. (14), we re-write the actions in the time-
dependent Kohn-Sham style,6

A = S0 − AXC − AH −
∫∫

d�rdtρ(�r, t)v(�r, t),

where v(�r, t) is the time-dependent external potential, the
Hartree term AH is

∫∫
d�rd�r ′ ρ(�r,t)ρ(�r ′,t)

|�r−�r ′ | , and S0 is defined as

S0 =
T∫

0

∑
j

〈φj (t)|i∂t + 1

2
∇2|φj (t)〉dt, (16)

with {φj(t)} being the time-dependent Kohn-Sham orbitals.
AXC is the XC action, i.e., between A and [S0 − AH

− ∫∫
d�rdtρ(�r, t)v(�r, t)].

By inserting the above expression for A into Eq. (14), we
obtain

δ(Atot − AK )

δρK (�r, t)
∣∣∣∣
uemb

= δ(Stot,0 − SK,0)

δρK (�r, t)

− δ

δρK (�r, t)

(
AXC

[ ∑
K

ρK

]
− AXC[ρK ]

)
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− δ

δρK (�r, t)

(
AH

[ ∑
K

ρK

]
− AH [ρK ]

)

− (vion,tot (�r) − vion,K (�r) − uemb(�r, t)), (17)

where vion,tot and vion,K are respectively the ionic potentials
of the total system and subsystem K.

Equation (17) provides us a way to further approxi-
mate the integral equation (14) by evaluating AK using ap-
proximate functionals. This is the reason that we treat the
two

∑
K δAK/δuemb terms in Eq. (13) differently. The first∑

K δAK/δuemb term in Eq. (13) is treated exactly (using the
identity Eq. (12)), and the second

∑
K δAK/δuemb term in

Eq. (13) will be treated approximately in what follows.
In practice, approximate functionals such as the ALDA

might be used for the AXC in Eq. (17); i.e., the embedding po-
tential would be evaluated on the ALDA level while the time
propagation of each subsystem is handled by a higher-level
method. This results in a similar framework as for our previ-
ous time-independent embedding calculations,20, 28 where the
LDA or generalized gradient approximations were used for
evaluating the XC functionals in the interaction term. If we
were to ignore the terms containing Stot, 0 and SK, 0 in Eq. (17),
the interaction between subsystems would only be due to the
Coulomb and XC parts. If we were to further discard the XC
terms in Eq. (17), the embedding would then be purely based
on electrodynamics.

According to Ref. 58, the functional derivative of S0 with
respect to ρ(�r, t) is

δS0

δρ(�r, t) = veff (�r, t) +
∑

j

i

〈
φjT

∣∣∣∣ δφjT

δρ(�r, t)
〉
, (18)

where veff (�r, t) is the time-dependent Kohn-Sham ef-
fective potential that drives {φj (�r, t)} as i∂tφj (�r, t)
= (− 1

2∇2 + veff (�r, t))φj (�r, t), and φjT stands for
φj (�r, t = T ). In Eq. (18), boundary terms again arise
due to the time-dependent Kohn-Sham orbitals φj (�r, t = T ).

Using Eq. (18), we have for the first term on the RHS of
Eq. (17),

δ(Stot,0 − SK,0)

δρK (�r, t)

=
(

veff

[∑
K

ρK

]
(�r, t) − veff [ρK ](�r, t)

)

+
[ ∑

j

i

〈
φtot,jT

∣∣∣∣ δφtot,jT

δρK (�r, t)
〉

−
∑

j

i

〈
φK,jT

∣∣∣∣ δφK,jT

δρK (�r, t)
〉]

, (19)

where troublesome boundary terms that include φtot, jT and
φK, jT again plague the evaluation of Eq. (19). If we again ne-
glect causality,58 these boundary terms can be removed. The
only terms left in Eq. (19) contain veff , which can be evalu-
ated for a given v-representative time-dependent electron den-
sity as discussed in Sec. II D.

C. TDDFT/ALDA-in-TDDFT/ALDA embedding

After demonstrating some ways to simplify Eq. (8),
as proof-of-principle we now show how to simplify TD-
PFET for a more straightforward case: TDDFT/ALDA-in-
TDDFT/ALDA embedding, in which the XC functionals in
Eq. (17) are approximated by ALDA and all subsystems are
propagated using TDDFT/ALDA. No boundary term appears
in the formalism of TDDFT/ALDA.58 Therefore, Eq. (13) can
be greatly simplified for TDDFT/ALDA-in-TDDFT/ALDA
embedding by removing all the boundary terms. We finally
have

∑
K

∫∫
d�r ′dt ′

[
δAK

δρK (�r ′, t ′)

∣∣∣∣
uemb

+
(

δAtot

δρK (�r ′, t ′)
− δAK

δρK (�r ′, t ′)

∣∣∣∣
uemb

) ]
δρK (�r ′, t ′)
δuemb(�r, t) = 0.

(20)

In Eq. (20) ρK is evaluated for any given uemb, and the total
electron density is obtained as ρtot = ∑

K ρK . As written, the
terms inside the square bracket on the LHS of Eq. (20) imply
that for subsystem K there is an additional time-dependent
external potential,

vadd,K (�r, t) = δAtot

δρK (�r, t) − δAK

δρK (�r, t)
∣∣∣∣
uemb

.

Since no boundary term appears in the formalism of
TDDFT/ALDA, we have δAK

δρK
|uemb

= 0. By the chain rule, δAtot

δρK

is just equal to δAtot

δρtot
. Therefore vadd,K does not depend on K.

To iteratively solve for uemb(�r, t) we simply update it as

u
(n+1)
emb,K (�r, t) = u

(n)
emb,K (�r, t) − vadd,K (�r, t)

= u
(n)
emb,K (�r, t) − δAtot

δρtot (�r, t) , (21)

with n being the iteration number. Equation (21) also ensures
that we always have a common time-dependent embedding
potential for all subsystems. The δAtot/δρ tot term in Eq. (21)
can be decomposed as

δAtot

δρtot

= veff [ρtot ] − vXC[ρtot ] − vH [ρtot ] − vion,tot − vtd ,

(22)
where veff [ρtot ] is the time-dependent Kohn-Sham effective
potential associated with density ρtot (�r, t) [we discuss in de-
tail how to solve for veff [ρtot ] in Sec. II D], the XC potential

is vXC = δAALDA
XC [ρtot ]
δρtot

, vH is the Hartree potential, vion,tot (�r) is
the ionic potential of the total system, and vtd (�r, t) is the time-
dependent external potential, e.g., time-dependent laser field.
When Eq. (21) converges, we reach δAtot

δρtot
= 0 which makes

Eq. (20) hold. Technically we just need to solve the coupled
Eqs. (21) and (22), which is discussed in detail in Sec. III.

D. Inversion of the time-dependent Kohn-Sham
equation for a v-representable electron density

We now focus on how to obtain the veff (�r, t) in Eq. (22)
for a given time-dependent electron density. Unlike our earlier
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time-independent potential functional embedding formulation
in which we could use the Wu-Yang inversion method,60 here
we cannot do so because in principle δA

δveff (�r,t) is nonzero. Even

if for the TDDFT/ALDA case δA
δveff (�r,t) is zero due to the van-

ishing of boundary terms as discussed above, we still cannot
solve for veff (�r, t) by minimizing the action A with respect
to veff (�r, t) as suggested in Ref. 60, since the solution is the
stationary point of action A.

Instead, we extend the Zhao-Morrison-Parr (ZMP)
method,61 originally introduced for time-independent quan-
tum systems, to time-dependent quantum systems. Our
time-dependent version of the ZMP method is denoted as
“TDZMP” in what follows. Here, the penalty functional in
the original ZMP method61 is modified to

Vpenalty[ρ] = λ

2

∫
dt

∫∫
d�rd�r ′

× (ρ(�r, t) − ρref(�r, t))(ρ(�r ′, t) − ρref(�r ′, t))
|�r − �r ′| ,

where ρref(�r, t) is the target time-dependent electron density.
The time-dependent Kohn-Sham equations in TDZMP

are

i∂tφj (�r, t)=
[
−1

2
∇2+veff,approx[ρ](�r, t)+vpenalty[ρ](�r, t)

]

×φj (�r, t), (23)

where ρ(�r, t) = ∑
j |φj (�r, t)|2 and veff,approx is an approx-

imated time-dependent Kohn-Sham effective potential. The
potential vpenalty[ρ], due to Vpenalty[ρ], is

vpenalty(�r, t) = λ

∫
d3r ′ ρ(�r ′, t) − ρref(�r ′, t)

|�r − �r ′| . (24)

For a given λ, the coupled Eqs. (23) and (24) are solved self-
consistently. The resulting time-dependent Kohn-Sham effec-
tive potential for this λ is

veff,λ(�r, t) = veff,approx[ρ](�r, t) + vpenalty[ρ](�r, t).
To accelerate convergence when solving the coupled Eqs. (23)
and (24), one needs to construct a veff,approx that is close
to veff,λ(�r, t). In this work, veff,approx consists of the time-
dependent external potential (the laser field), the ionic poten-
tial, and the Hartree potential (evaluated based on ρref(�r, t)).
Since the time-dependent XC potential for ρref(�r, t) is not
known, we do not add it to veff,approx.

To obtain the exact time-dependent Kohn-Sham effective
potential, i.e., veff,λ=∞(�r, t), one can extrapolate to it by solv-
ing Eqs. (23) and (24) for several different λs.

III. NUMERICAL DETAILS

In all calculations, a plane wave basis kinetic energy cut-
off of 600 eV, Fermi-Dirac smearing with a smearing width
of 0.1 eV, and the Perdew-Wang LDA62 XC functional were
used. The geometry of the Na4 cluster was taken from our pre-
vious work,63 in which the cluster atoms lie in the x-y plane
(Fig. 1(b)). The distance between Natop and Nabottom is 6.51 Å,
and between Naleft and Naright is 3.05 Å. The Na4 cluster was
placed in vacuum within a periodic cell of 15 × 15 × 15 Å.

The norm-conserving pseudopotential for Na was generated
using the FHI98 code64 with its default cutoff radii.

Before performing TD-PFET calculations, a PFET35 cal-
culation was carried out, where each Na atom was treated as
one subsystem. The PFET results were then used as input for
the following TD-PFET calculations. PFET is implemented
in the ABINIT65 code; details can be found in Ref. 35. All
TDDFT and TDZMP calculations were performed using a
homemade code implemented in ABINIT. To perform TD-
PFET, a custom FORTRAN90 code drives both the TDDFT
and TDZMP codes.

We obtain the time-independent embedding potential
uPFET

emb (�r) with PFET. The subsystem electron numbers op-
timize to 1.057 and 0.943 for Natop (and Nabottom) and
Naright (and Naleft), respectively, where the fractional elec-
tron numbers result from the equilibration of chemical
potentials among the subsystems.35 The total electron den-
sity ρPFET

tot (�r) is then obtained by superposing all subsys-
tem electron densities. The Kohn-Sham orbitals {φPFET

i,tot (�r)}
and the Kohn-Sham effective potential vPFET

eff,tot (�r) associated
with ρPFET

tot (�r) are obtained by performing the Wu-Yang op-
timized effective potential scheme,60 with a regularization
coefficient66 of 1 × 10−8. The sum of XC and Hartree poten-
tials is obtained as vPFET

HXC (
⇀

r ) = vPFET
eff,tot (�r) − vion,tot (�r). Then,

uPFET
emb (�r), vPFET

HXC (�r), ρPFET
tot (�r), and {φPFET

i,tot (�r)} are supplied for
TD-PFET calculations.

The steps for performing TD-PFET are

1. Propagate each subsystem using TDDFT/ALDA from t
to t + �t, with the trial uemb(�r, t) as an additional exter-
nal potential. At t = 0, uemb(�r, t) is taken as uPFET

emb (�r).
2. Obtain the total electron density ρtot (�r, t + �t) by

superposing all subsystem electron densities {ρK (�r, t
+ �t)}.

3. The veff (�r, t + �t) and {φi,tot (�r, t + �t)} associated
with ρtot (�r, t + �t) are obtained using TDZMP. To per-
form TDZMP, veff and {φi, tot} from the previous time
step are needed. At the first time step, vPFET

HXC (�r) and
{φPFET

i,tot (�r)} from the PFET calculations are used.
4. With veff (�r, t + �t) and ρtot (�r, t + �t) in hand, we

evaluate δAtot

δρK
with Eq. (22) and then update uemb(�r, t

+ �t) with Eq. (21).
5. If ρtot (�r, t + �t) is not converged, we return to step 1.

Once the above cycle for evaluating uemb(�r, t + �t) is
finished, we move on to solve for uemb(�r, t + 2�t).

In this work, a laser pulse is applied in the y direction
(Fig. 1(b)). Its electric part is �E = R[A exp(iωt)]ŷ, with the
envelope defined as A = a0cos (π (t − 2τ 0 − t0)/2τ 0). Param-
eters used are τ 0 = 0.2 fs, t0 = 0.2 fs, ω = 18 fs−1, and a0

= 2.0 V/Å. The laser is turned off (set to zero) after t = 0.4
fs. A time step of 0.01 fs was found small enough to converge
the electron dynamics.

Usually, time-dependent Kohn-Sham equations are prop-
agated using the second-order Crank-Nicolson scheme,67, 68

φj (�r, t + �t) =
(

1 − i
2

(
H (t+�t)+H (t)

2

)
�t

)
(

1 + i
2

(
H (t+�t)+H (t)

2

)
�t

)φj (�r, t), (25)
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where H(t) is the Kohn-Sham Hamiltonian at time t. Using the
above propagator, the amplitude of uemb(�r, t) increases dra-
matically over time in our TD-PFET simulations. To avoid
this instability, we suppress the transfer of numerical er-
rors from time t to t + �t by using instead the first-order
Crank-Nicolson propagator,

φj (�r, t + �t) =
(
1 − i

2H (t + �t)�t
)

(
1 + i

2H (t + �t)�t
)φj (�r, t). (26)

The above propagator [Eq. (26)] only depends on H(t + �t),
therefore uemb(�r, t + �t) no longer needs to compensate for
any numerical error in uemb(�r, t), which greatly suppresses the
transfer of numerical error from uemb(�r, t) to uemb(�r, t + �t).
By contrast, the second-order Crank-Nicolson propagator
[Eq. (25)] is determined by 1

2 (uemb(�r, t + �t) + uemb(�r, t)),
and any numerical error in uemb(�r, t) will be transferred to
and accumulate in uemb(�r, t + �t).

The first-order propagator [Eq. (26)] also stabilizes
the TDZMP calculations. In TDZMP, H(t + �t) is just
− 1

2∇2 + veff,λ(�r, t + �t), where veff,λ(�r, t + �t) is what we
are solving for. φj (�r, t + �t) in Eq. (26) is then solely
determined by veff,λ(�r, t + �t) and φj (�r, t), instead of
1
2 (veff,λ(�r, t + �t) + veff,λ(�r, t)) as in the case of using the
second-order Crank-Nicolson propagator [Eq. (25)]. In this
way, we again greatly suppress the transfer of any numerical
error from veff,λ(�r, t) to veff,λ(�r, t + �t).

IV. RESULTS AND DISCUSSION

We demonstrate TD-PFET on a Na4 cluster subject to an
external laser field as described in Sec. III. The laser is turned
on at t = 0 and then turned off (set to zero) after 0.4 fs [see
Fig. 2(c)]. TDDFT/ALDA calculations on the entire (i.e., non-
embedded) Na4 cluster provide our benchmark [black solid
lines in Figs. 2(a) and 2(b)].

We show the time evolution of the electric dipoles from
TD-PFET calculations [Fig. 2(a)] for three different penalty-
function coefficients: λ = 2 × 104 (red dotted line), λ = 7
× 103(green dotted-dashed line), and λ = 2 × 103 (orange
dotted-dotted-dashed line). The electric dipole for infinitely
large λ is extrapolated (blue dashed line) from them. As ex-
pected, larger λ gives a curve closer to the benchmark. The
small residual difference between the benchmark and the ex-
trapolated curve is attributed to the numerical errors in our im-
plementation of TD-PFET. Note that although the deviations
between the benchmark and the extrapolated curves slowly
increase with time, they do not obscure subtle features in the
dipole evolution: for large t after the pulse, the benchmark
predicts residual oscillations in the electric dipole [black ar-
rows in Fig. 2(a)]. The positions and magnitudes of these
small oscillations are all correctly reproduced by TD-PFET.
For comparison, we also perform a TD-PFET calculation by
fixing uemb(�r, t) to uPFET

emb (�r) at all time. The result (purple
circles) differs significantly from the benchmark, which in-
dicates that we cannot simply replace the time-dependent
embedding potential with the embedding potential from a
time-independent embedding calculation. A true TD-PFET
simulation is essential.

FIG. 2. Time evolution of a Na4 cluster in a laser field, as predicted by TD-
PFET compared to full TDDFT benchmark calculations. (a) Comparison of
electric dipoles in the y direction. The purple circles are obtained by fixing
uemb(�r, t) to uPFET

emb (�r) during the TD-PFET simulation. (b) Comparison of
the non-interacting Kohn-Sham kinetic energies. (c) Amplitude of the applied
laser, in the y direction. All axes are in atomic units. In (a) and (b), the full-
system benchmarks are shown as black solid curves, results from TD-PFET
simulations with penalty coefficients λ = 20 000, λ = 7000, and λ = 2000
as red dotted, green dotted-dashed, and orange dotted-dotted-dashed curves,
respectively. The λ = ∞ curve (blue dashed curves) are extrapolated from
these three TD-PFET curves. In (a) and (b), TD-PFET correctly reproduces
the small oscillations (marked with arrows) of the benchmark.

We also compare the time-dependent kinetic energy τ (t)
[see Fig. 2(b)], defined as

τ (t) =
∑
i=occ

∫
dr3φ∗

i (�r, t)
(

−1

2
∇2

)
φi(�r, t),

where φi(�r, t) is the ith complex time-dependent Kohn-Sham
orbital obtained via inversion of the time-dependent total
electron density (superposition of time-dependent subsystem
electron densities) using the TDZMP method. For an isolated
system, τ (t) is real. TD-PFET reproduces the benchmark very
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FIG. 3. Snapshot of Na4 electron density profiles (in atomic units) at t = 1.0
fs between Natop and Nabottom (along the dashed line in Fig. 1(b)). The full-
system benchmark is shown as the black solid curve, with the density profiles
of the four Na atoms (subsystems) shown as dashed lines. The sum of sub-
system electron densities is in purple circles, which matches the benchmark
very well. Due to the symmetry of the cluster, the electron densities from
Naleft and Naright are almost identical; we thus only show Naleft. The posi-
tions of Natop and Nabottom are marked by “X”s. We find that the electron
densities are polarized towards Natop.

well [Fig. 2(b)]. Once again, the TD-PFET results with larger
penalty function coefficients are closer to the benchmark. At
t = 0 fs, we find a 1.1 mHa difference in kinetic energy be-
tween the benchmark and TD-PFET. This is due to the fact
that ρPFET

tot (�r) is slightly different from the ground state elec-
tron density obtained by performing Kohn-Sham DFT/LDA
on the whole Na4 cluster. Therefore the kinetic energy
τ (t = 0) inverted from ρPFET

tot (�r) is slightly different from the
benchmark. Nevertheless, TD-PFET accurately reproduces
the peak of τ (t) at 0.26 fs, as well as the many small oscil-
lations marked by black arrows.

We further assess the quality of TD-PFET by comparing
the electron density profiles (Fig. 3) at t = 1.0 fs. The sum
of subsystem electron densities (purple circles) matches the
benchmark (black solid curve) very well. We observe that, as
expected from the direction of the electric field, the electron
density is polarized towards Natop.

In addition to reproducing the time-dependent behavior
of the full system, TD-PFET allows us to study the time evo-
lution of subsystems. At t = 0 fs, the electric dipole moment
of the Na4 cluster is zero, as confirmed by the symmetric elec-
tron densities between Natop and Nabottom, and between Naleft

and Naright [see Fig. 4(a)]. At t = 1.0 fs, the electron densities
of all Na atoms are polarized by the laser in the y direction
[see Fig. 4(b)] to produce a net electric dipole.

V. COMPARISON TO THE
“FRAGMENT-TIME-DEPENDENT DENSITY
FUNCTIONAL THEORY”

During the preparation of this paper, we became aware
of a related work by Wasserman et al.,69 which introduced a
fragment-based time-dependent density functional theory to
solve large time-dependent systems in a divide-and-conquer
manner. They provide a differential equation that relates the

FIG. 4. Superpositions of four subsystem electron densities (isosurface is 6
× 10−4 1/bohr3 for all subsystems) at t = 0 fs (a) and t = 1.0 fs (b). Yellow
balls indicate Na nuclei. At t = 1.0 fs, all subsystems are polarized in the
laser direction (y direction).

global partitioning potential (which resembles our embed-
ding potential) to the total density evolution [see Eq. (19) in
Ref. 69], which can be used to propagate the partitioning
potential. However, the resulting propagation scheme relies
on an independent propagation of the total electron density.
To better understand this point, we re-derive their Eq. (19).
Starting from the continuity equation for subsystem α, we
obtain

∂2nα(�r, t)
∂t2

= i∇ · Tr{�̂s,α[ĵ(t), Ĥs,α(t)]}

= i∇ · Tr{�̂s,α[ĵ(t), T̂s(t)]}
+ i∇ · Tr{�̂s,α[ĵ(t), vp + vHxc + vα]}

= i∇ · Tr{�̂s,α[ĵ(t), T̂s(t)]}
+∇ · [nα∇vp] + ∇ · [nα∇(vHxc + vα)], (27)

where the same notations as in Ref. 69 are used. [Note the un-
conventional sign of the probability current below Eq. (4) in
Ref. 6 would give an opposite sign for the potential terms, the
last two terms, in Eq. (27).]. nα(�r, t) is the electron density of
subsystem α, �̂s,α is the density matrix of subsystem α, ĵ is
the probability current operator, vp(�r, t) is the time-dependent
partition potential (denoted as the embedding potential in our
work), and vα(�r) is the ionic potential of subsystem α. After
summing up the above equation for all subsystems, we reach
Eq. (19) in Ref. 69. Since Eq. (27) follows from the conti-
nuity equation for each subsystem, it holds for any given em-
bedding potential vp(�r, t). Hence Eq. (19) in Ref. 69 holds for
any vp(�r, t), as long as the total electron density is obtained by
n(�r, t) = ∑

α nα(�r, t). Consequently, one requires a different
approach to first determine the total time-dependent electron
density n(�r, t), before solving for the partitioning potential
using Eq. (19) in Ref. 69.

By contrast, our scheme does not require an inde-
pendent calculation of n(�r, t): a general integral equa-
tion Eq. (8) for solving for the time-dependent embed-
ding potential is derived in this work based on the ac-
tion of time-dependent quantum mechanics. The quality of
the embedding is then determined by the level of approx-
imations used for solving Eq. (8). Finally, our framework
also allows for using different levels of theory in different
subsystems.
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VI. CONCLUSIONS

We introduced a time-dependent potential-functional em-
bedding theory, which offers the possibility to simulate
different regions in molecules or materials with different
time-dependent quantum mechanics methods endowed with
different levels of accuracy. By constraining all subsystems
to share a common time-dependent embedding potential, the
embedding potential is proved to be unique (up to an un-
determined time-dependent constant, see the Appendix) for
a given time-dependent quantum system, which makes our
TD-PFET tractable for practical use. We derived an inte-
gral equation to solve for this unique time-dependent embed-
ding potential and discussed practical means to approximately
solve it. For the straightforward case of TDDFT/ALDA-in-
TDDFT/ALDA embedding, we showed how to solve for the
embedding potential using a simple iterative scheme, and
demonstrated it for a Na4 cluster, in which each Na atom was
treated as a subsystem.

Our Na4 cluster test demonstrated that the TDZMP
method is quite time-consuming. Therefore it would be de-
sirable to find an alternative approach to evaluate more
quickly the time-dependent Kohn-Sham effective potential
for a given time-dependent electron density. One promis-
ing approach is the recently introduced time-dependent
orbital-free density functional theory (TD-OFDFT),70 in
which the time-dependent Kohn-Sham effective potential
is approximated without invoking time-dependent Kohn-
Sham orbitals. TD-PFET would greatly benefit from fur-
ther developments of TD-OFDFT, whose efficiency and
accuracy was recently demonstrated for free-electron-like
systems.70

Future work could apply TD-PFET to study materials
in which a region of interest would be best described by
more accurate but more expensive time-dependent quantum
mechanics methods, such as TDCW methods or TDDFT
equipped with advanced orbital-dependent time-dependent
XC functionals,71–73 while the environment could be treated
efficiently by low-level time-dependent quantum mechanics
methods, e.g., TDDFT/ALDA. Numerical challenges in solv-
ing the nonlinear Eq. (8) must be overcome for such advanced
applications. Ultimately, we hope TD-PFET will prove useful
for studying electron dynamics in materials and biomolecules,
where characterization of electronic motion is often crucial to
understanding their properties (e.g., in photovoltaics and pho-
tosynthetic reaction centers). We anticipate applications of
our theory to include surface-enhanced Raman spectroscopy,
spectra of dye molecules in dye-sensitized solar cells. By
treating the electron donor and acceptor together as one sub-
system, while the surrounding environment is handled with a
cheaper method, our TD-PFET might be found useful to study
charge transfer and separation in light-harvesting molecules
and materials.
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APPENDIX: PROOF OF THE UNIQUENESS OF THE
TIME-DEPENDENT EMBEDDING POTENTIAL

We show in the following that once a time-dependent
quantum system is selected and the grouping of atoms is done,
uemb(�r, t) is uniquely determined up to a time-dependent con-
stant c(t). Our proof for such uniqueness is an extension of the
Runge-Gross theorem.

Suppose that at t = 0, the system is in its ground state
with its time-independent embedding potential uemb(�r, 0),
which is unique and can be obtained from PFET.35 At t > 0,
let us assume that uemb(�r, 0) evolves into two different time-
dependent embedding potentials uemb(�r, t) and u′

emb(�r, t) that
yield the same time-dependent total electron density, i.e.,
ρtot (�r, t) = ∑

K ρK (�r, t) = ∑
K ρ ′

K (�r, t). We now prove that
uemb(�r, t) and u′

emb(�r, t) can only differ by a time-dependent
constant, which means that if we expand uemb(�r, t) and
u′

emb(�r, t) in a Taylor series around t = 0, we should have
for all orders l,

∂l

∂t l
(uemb(�r, t) − u′

emb(�r, t))|t=0 = const. (A1)

Our proof for Eq. (A1) proceeds by reductio ad absurdum:
we assume that uemb(�r, t) and u′

emb(�r, t) differ at some point
t > 0. Then their Taylor expansion at t = 0 must already differ
at some finite order l

∂l

∂t l
(uemb(�r, t) − u′

emb(�r, t))|t=0 �= const. (A2)

We will now show that Eq. (A2) leads to a contradiction.
For subsystem K, the time-derivative of its current den-

sity �jK (�r, t) is

i
∂

∂t
�jK (�r, t) = 〈�K (t)|[ �̂jK (�r), ĤK (t)]|�K (t)〉,

where the current density operator is defined as

�̂jK (�r) = − 1

2i

∑
s

[ �∇ψ̂+
s,K (�r)ψ̂s,K (�r) − �∇ψ̂s,K (�r)ψ̂+

s,K (�r)].

Note that we have employed the conventional definition of the
probability current, which has an opposite sign compared to
the definition in Ref. 6. At t = 0, �K(t = 0) and �K

′(t = 0) are
identical, since we required that both unprimed and primed
systems start from the same initial many-body wavefunction.
Subtracting �jK from �j ′

K as in Ref. 6, we have

i
∂

∂t
[ �jK (�r, t) − �j ′

K (�r, t)]|t=0

= −iρK (�r, 0) �∇[uemb(�r, 0) − u′
emb(�r, 0)], (A3)

where we have used the fact that {ρK (�r, t)} is the same for
both the primed and the unprimed systems at t = 0.
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As in Ref. 6, after applying the time-derivative l times to
Eq. (A3), we obtain(

i
∂

∂t

)l+1

[ �jK (�r, t) − �j ′
K (�r, t)]|t=0

= −iρK (�r, 0) �∇
[(

i
∂

∂t

)l

(uemb(�r, t)) − u′
emb(�r, t)

∣∣∣∣∣
t=0

]
.

(A4)

Based on the continuity theorem, for subsystem K we
have

∂

∂t
[ρK (�r, t) − ρ ′

K (�r, t)] = −�∇ · [ �jK (�r, t) − �j ′
K (�r, t)].

(A5)
By applying ∂ t to Eq. (A5) (l + 1) times and with help from
Eq. (A4), we obtain (after summing over all subsystems)

∂l+2

∂t l+2
[ρtot (�r, t) − ρ ′

tot (�r, t)]|t=0 = �∇ · [ρtot (�r, 0) �∇W (�r)],

(A6)
where W (�r) is defined as

W (�r) ≡ ∂l

∂t l
[uemb(�r, t) − u′

emb(�r, t)]|t=0,

which is non-zero due to our assumption. Green’s theorem
provides the identity∫

dr3W (�r) �∇ · [ρtot (r, 0) �∇W (�r)]

= −
∫

dr3ρtot (�r, 0)[ �∇W (�r)]2 +
∮

ρtot (�r, 0)W (�r) · n̂ds.

(A7)

In Eq. (A7), we assume that ρtot (�r, 0) decays fast enough at
the boundary to ensure the surface integral to be zero. Since∫

dr3ρtot (�r, 0)[ �∇W (�r)]2 is non-zero, �∇ · [ρtot (r, 0) �∇W (�r)]
cannot be zero everywhere in space. Therefore, the left hand
side of Eq. (A6) cannot be zero for order l, which means that
ρtot (�r, t) and ρ ′

tot (�r, t) will differ from each other at some
point after t = 0. This contradicts our initial assumption that
ρtot (�r, t) = ρ ′

tot (�r, t) at all time, which proves that our as-
sumption Eq. (A2) was incorrect. By proof of contradiction,
we have thus shown that Eq. (A1) must hold for any order l
at all time. Therefore ρtot (�r, t) determines uemb(�r, t) up to a
time-dependent constant.
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