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We report a new implementation of the density functional embedding theory (DFET) in the VASP
code, using the projector-augmented-wave (PAW) formalism. Newly developed algorithms allow us
to efficiently perform optimized effective potential optimizations within PAW. The new algorithm
generates robust and physically correct embedding potentials, as we verified using several test
systems including a covalently bound molecule, a metal surface, and bulk semiconductors. We show
that with the resulting embedding potential, embedded cluster models can reproduce the electronic
structure of point defects in bulk semiconductors, thereby demonstrating the validity of DFET in
semiconductors for the first time. Compared to our previous version, the new implementation of
DFET within VASP affords use of all features of VASP (e.g., a systematic PAW library, a wide
selection of functionals, a more flexible choice of U correction formalisms, and faster computational
speed) with DFET. Furthermore, our results are fairly robust with respect to both plane-wave and
Gaussian type orbital basis sets in the embedded cluster calculations. This suggests that the density
functional embedding method is potentially an accurate and efficient way to study properties of iso-
lated defects in semiconductors. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922260]

I. INTRODUCTION

Point defects universally exist in all types of solid state
materials and play important roles in engineering material
properties. The presence of defects significantly affects the
chemical, electrical, optical, and mechanical properties of the
material.1 Understanding the physics of point defects is thus
crucial for designing new materials for various applications. In
particular, defects have been shown to be one of the key factors
determining the performance of thin film solar cells:2 on the
one hand, certain levels of intrinsic defects or extrinsic dopants
are the source of free carriers, increasing the conductivity of
the semiconductor; on the other hand, wrong types of defects
also serve as non-radiative recombination centers and intro-
duce immobile trap states. It is thus of paramount importance
to understand defect states in order to ultimately control them.
The dearth of experimental techniques to probe bulk atomic-
scale defects motivates use of first-principles quantum me-
chanics calculations to do so.

Density functional theory (DFT) based on plane-wave
(PW) basis sets is currently the state-of-the-art in the mate-
rial science community for describing periodic extended sys-
tems. Although being successful in general, DFT suffers from
approximate treatment of electron exchange-correlation (XC),

a)Author to whom correspondence should be addressed. Electronic mail:
eac@princeton.edu.

resulting in self-interaction error3 and the related underesti-
mation of band gaps. In quantum chemistry, more accurate
correlated wavefunction (CW) methods (Møller-Plesset (MP)
perturbation theory, configuration interaction (CI), coupled
cluster (CC), etc.) are available, but these methods are not
straightforward to implement in a periodic setting and much
more expensive within the PW formalism.4 This is especially
true for the simulation of isolated defects, which usually re-
quires large supercells to avoid interactions between periodic
images. The poor scaling behavior of the PW-CW methods
significantly limits their applicability in these scenarios. This
problem becomes even more severe for charged defects, which
requires careful consideration using periodic boundary condi-
tions (PBCs). For example, in some solar cell materials, the
charges carried by the defects create local electrostatic poten-
tial fluctuations, which can be a major reason for low open-
circuit voltages.5 To study such charged defects, besides large
supercells, specially designed corrections6–9 are also needed
to diminish the long-range electrostatic interactions between
periodic images.

A promising alternative to eschew these difficulties asso-
ciated with the periodic PW formalism is the use of embedded
cluster calculations. In this approach, we exploit the locality
of the defect and construct a finite cluster model, representing
the critical region of interest. The influence of the surrounding
parts of the system (the environment) is represented by an
embedding potential. The environment and its interaction with

0021-9606/2015/143(10)/102806/15/$30.00 143, 102806-1 © 2015 AIP Publishing LLC
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the cluster can be computed using a lower level method such
as a DFT approximation, while the cluster can be studied
using high-level embedded correlated wavefunction (ECW)
methods. Various approaches to constructing the embedding
potential have been proposed, which have been summarized
elsewhere.10–12 In this work, we focus on the density func-
tional embedding scheme developed by Huang et al.13 In this
scheme, one can define a unique embedding potential for both
subsystems, which exactly reproduces the electron density of
the total system by summation of the electron densities of the
two embedded subsystems. By solving an optimized effec-
tive potential (OEP) problem, we obtain this unique embed-
ding potential at the DFT level (see below for details). We
can now conduct ECW calculations on the embedded cluster
without PBCs, using the well-developed formalisms of quan-
tum chemistry. The density functional embedding scheme has
been successfully applied to studying absorbates (such as H2
or O2) on metal surfaces, including Al and Au.14–16 While it
has been shown that the embedded metal cluster can decently
reproduce bulk metal properties, the accuracy of the den-
sity functional embedding method beyond metallic systems
has been tested sparingly.17 Several other embedding schemes
have been applied to systems featuring more covalent bonding
character, in both molecules and condensed matter.10–12,18–22

We therefore would also like to extend the scope of the density
functional embedding theory (DFET) method beyond metals.
In this paper, we will demonstrate some preliminary test cases
illustrating the potential capability of the density functional
embedding method for the study of semiconductor defect sys-
tems.

While performing PW-DFT calculations on semiconduc-
tors, there are two primary ways to handle the large wave-
function amplitudes near the core region that otherwise would
require very large kinetic energy cutoffs using PWs: pseudopo-
tentials (PPs) and the projector-augmented-wave (PAW)23,24

method. The density functional embedding method was imple-
mented previously in the ABINIT25–27 program, in conjunction
with norm-conserving PPs.28 Meanwhile, another highly par-
allelized program that is widely utilized in the material science
community is VASP.29–32 VASP provides a wide selection
of XC functionals, ranging from local density approxima-
tion (LDA)33 to hybrid functionals such as Heyd-Scuseria-
Ernzerhof 06 (HSE06).34 Compared to ABINIT,
VASP also provides a simpler U-J correction formalism devel-
oped by Dudarev et al.,35 which is often employed to alleviate
the self-interaction errors for transition metal elements in
semiconductor and ionic materials. More importantly, VASP
offers a robust, well-tested library of PAW potentials that
covers the entire periodic table. The PAW formalism is more
accurate than PPs, as it (i) offers an exact transformation be-
tween the original, oscillating wavefunction and the pseudized,
slowly varying pseudo-wavefunction used in the computation
and (ii) explicitly treats the all-electron wavefunctions, albeit
within the frozen-core approximation. The implementation
of PAW in VASP offers an efficient way to conduct frozen-
core, all-electron calculations with reasonably low kinetic
energy cutoffs (typically even lower than the norm-conserving
PP calculations). Considering these advantages, we would
like to extend our implementation of the density functional

embedding scheme to VASP. This extension should enable
us to conduct embedding calculations with the PAW-DFT
formalism beyond the current PP setup. As we will show, the
PAW formalism introduces additional complications into the
embedding scheme, which require a series of modifications
of the embedding algorithm. In the following, we describe
the algorithm developed in the new implementation and we
test the robustness of the new algorithm on various types of
systems, including covalently bound molecules, metals, and
most importantly, semiconductors including defects.

II. THEORY AND IMPLEMENTATION DETAILS

A. Density functional embedding theory

In the following, we briefly review the algorithm and the
numerical details of the density functional embedding method
here. Interested readers can find a detailed treatment in Ref. 13
for more complete theoretical derivations.

Consider a total system partitioned into two subsystems,
labeled as system A and system B, respectively. The essential
idea of the DFET is to find a unique embedding potential Vemb

for both systems A and B, such that

nA[Vemb] + nB[Vemb] = nref . (1)

The nK [Vemb] , K = A, B, represent the ground-state elect-
ron densities of the two subsystems obtained from separate,
converged self-consistent field (SCF) calculations in the pres-
ence of Vemb and nref represents the ground-state electron den-
sity of the total system, computed without embedding poten-
tial. In this work, we always use the same embedding potential
for different spin states, and consistently we always perform
non-spin-polarized calculations to maintain the spin symme-
try. In practice, in order to obtain Vemb, we need to maximize the
following extended Wu-Yang (WY) functional36 with respect
to Vemb:

W [Vemb] = EA[nA] + EB[nB] −


Vemb(r⃗)nref dr⃗ . (2)

Here, EK[nK],K = A,B is the energy functional of system
K , including its interaction with Vemb (


Vemb(r⃗)nKdr⃗). Given

that
δEK

δVemb(r⃗) = nK(r⃗), K = A,B, (3)

it can be proven that the derivative of the WY functional with
respect to Vemb is simply13

δW
δVemb

= nA + nB − nref . (4)

Equation (4) gives the gradient used in the optimization proce-
dure: when W reaches its maximum, the gradient vanishes
and condition (1) is naturally satisfied. The entire procedure
is effectively solving for an OEP, which, in our case, turns to
be the optimal unique embedding potential.

Analytically, Eq. (3) is guaranteed by the variational prin-
ciple. In the current implementation in ABINIT, all the func-
tions (densities, potentials, etc.) are expressed on one uniform
three-dimensional grid and all integrations are performed as
summations over this grid. In this circumstance, Eq. (3) always
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holds numerically, even using a finite grid size. However, as
we discuss below, this is no longer true for dual grid schemes.

B. Derivation of the embedding potential
within the PAW formalism

One of the key steps of the density functional embedd-
ing procedure is to perform SCF-DFT calculations for both
subsystems embedded in an external potential Vemb, from
which both densities (nK) and energies (EK[nK]) are obtained.
Therefore, we need to consider how to conduct PAW-DFT
calculations in conjunction with the presence of an arbitrary
external potential. Arbitrary in this context refers to the typical
length scale of potential fluctuations: while including a slowly
varying potential (on the length scale of interatomic distances)
is quite straightforward, rapid potential fluctuations close to
the ionic cores affect the PAW projection and thus need to be
treated carefully. In this section, we briefly review the PAW
formalism and discuss the necessary modifications introduced
by the arbitrary external potential. The readers are referred to
previous papers23,24 for a more detailed description of the PAW
method.

Using Blöchl’s nomenclature,18 the exact all-electron
(AE) wavefunction of the n-th band |Ψn⟩ is expressed as a soft
nodeless pseudo (PS)-wavefunction

�
Ψ̃n

�
via Eq. (5),

|Ψn⟩ = �
Ψ̃n

�
+


i

�|φi⟩ − �φ̃i

�� 

p̃i | Ψ̃n

�
, (5)

where |φi⟩ and
�
φ̃i

�
are the onsite AE and PS basis sets, respec-

tively. These two sets of basis functions are identical beyond
the core radius Raug but differ inside the core region. |p̃i⟩
are the projector functions that are orthonormal to the PS
basis:



p̃i | φ̃ j

�
= δi j. The projection introduced by Eq. (5)

damps the sharp oscillations of the wavefunction within the
core radius Raug such that the resulting soft PS wavefunction�
Ψ̃n

�
can be expanded using considerably fewer plane waves.

Usually, the frozen-core approximation is employed, i.e., the
AE wavefunctions of the core electrons are fixed during the
SCF iterations. In contrast to norm-conserving PPs, the exact
AE wavefunctions for both valence and core electrons are
explicitly represented and expanded using the ansatz given
by Eq. (5). Therefore, the PAW scheme can effectively be
considered as a frozen-core, all-electron level of theory.

In correspondence with the decomposition of the wave-
function, the total density of the system is decomposed into
three parts,

n = ñ + n1 − ñ1. (6)

The first term ñ is the PS density calculated directly from
PS wavefunctions on the uniform PW grid. The second (n1)
and third (ñ1) terms are the one-center densities (denoted by
the superscript 1) defined within the augmentation sphere,
associated with the AE and PS basis functions, respectively.
Due to the rapidly oscillating character of the one-center terms,
both densities are computed on dense radial grids centered on
the ion positions.

Within the PAW ansatz, the Kohn-Sham (KS) Hamilto-
nian of the system can be written as

H = −1
2
∇2 + ṽeff +


i j

|p̃i⟩
(
D̂i j + D1

i j − D̃1
i j

) 

p̃j

�
, (7)

D̂i j =

L


ṽeff (r⃗)Q̂L

i j(r⃗)dr⃗ , (8)

D1
i j = ⟨φi | − 1

2
∇2 + v1

eff

�
φ j

�
, (9)

D̃1
i j =



φ̃i

�
− 1

2
∇2 + ṽ1

eff

�
φ̃ j

�
+


L


Ωr

ṽ1
eff (r⃗)Q̂L

i j(r⃗)dr⃗ . (10)

Here, ṽeff is the Hartree and XC potential due to the soft
PS valence electron density ñ, the PS core electron density
plus the nuclear charges ñZc = ñc + nZ, and the compensation
charge n̂. All these terms are soft (meaning they have no sharp
oscillations) so they can be evaluated and stored on a coarse,
uniform grid. The compensation charge n̂ and its angularly
decomposed components Q̂L

i j(r⃗) are introduced to compensate
the different multipole moments of the AE and PS densities
within the core region.24 The term ṽ1

eff in Eq. (10) is the one-
center counterpart of ṽeff , which is still soft but evaluated on
much finer, ion-centered radial grids. The sharp one-center
potential v1

eff corresponds to the oscillating components of both
valence and nuclear-core charges (n1 and nZc). Naturally, these
strongly varying terms are computed and stored on the fine,
ion-centered radial grids.

When we introduce an embedding potential in the system,
it enters all three potential expressions, resulting in extra terms
(compare to Eqs. (43), (45), and (46) of Ref. 24),

ṽeff = vH[ñ + n̂ + ñZc] + vxc[ñ + n̂ + ñc] + Vemb, (11)

v1
eff [n1] = vH[n1 + nZc] + vxc[n1 + nc] + V LM

emb, (12)

ṽ1
eff [ñ1] = vH[ñ1 + n̂ + ñZc] + vxc[ñ1 + n̂ + ñc] + V LM

emb,

(13)

where ñc and nc are the PS and AE core electron densities
and ñZc and nZc are the core electron densities plus the nu-
clear charges. It is straightforward to perform the addition
in Eq. (11), as both the original soft potential ṽeff and the
embedding potential Vemb are stored on the same uniform grid.
However, in Eqs. (12) and (13), the one-center potentials (v1

eff
and ṽ1

eff ) are expressed on an angularly decomposed radial grid.
Therefore, in order to incorporate the embedding potential, an
extra step is needed to transform Vemb from the uniform grid to
radial grid, using the following projection:

Vemb(r⃗) =

LM

V LM
emb(r)SLM(r̂). (14)

In this equation, SLM are the real spherical harmonics, V LM
emb is

the LM-component of the embedding potential, in which L
and M denote the angular momentum of the corresponding
channel. r and r̂ are the length and direction of the vector
r⃗ − R⃗I , and R⃗I is the ion position. Then, the angularly decom-
posed V LM

emb is added in Eqs. (12) and (13) to account for the
effects of the embedding potential on the one-center terms in
PAW.

The dual grid transformation in Eq. (14) has profound
consequences for the evaluation of the energy derivatives with
respect to the embedding potential. According to Ref. 24, the
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total KS energy is

E =

n

fn


Ψ̃n

�
H
�
Ψ̃n

�
+ Ẽdc + E1

dc − Ẽ1
dc +U(−→R I). (15)

Here, the first term is the summation of the orbital eigenvalues,
which double counts the electron-electron interactions. In or-
der to correct for this error, we have to include the double
counting terms, which are denoted with subscript “dc.” The
total energy also includes the ion-ion interaction term, which
is represented by U(−→R I). Considering the variational principle
and using the definition of n̂ (Eq. (27) in Ref. 24), the derivative
of the total energy is

δE
δVemb

=
δE
δVemb

�����n(r )
=


n

fn


Ψ̃n

� δH
δVemb

�
Ψ̃n

�

= ñ + n̂ +

i, j

ρi j *
,

δD1
i j

δVemb
−

δD̃1
i j

δVemb

+
-

(16)

in which the onsite density matrix ρi j is defined as

ρi j =

n

fn


Ψ̃n | p̃i

� 

p̃j | Ψ̃n

�
. (17)

Here, the double counting terms (denoted with subscript “dc”)
and the ion-ion interaction term U(−→R I) vanish as they do not
contain Vemb explicitly. We only consider the valence bands for
the summation over n since we only aim to match the valence
electron densities, as usual within the frozen-core approxima-
tion. The first two terms of Eq. (16) are the soft charges given
by the PS wavefunction, which are easy to compute. However,
the exact evaluation of the third term is less straightforward, as
Vemb enters v1

eff and ṽ1
eff in an indirect way. In consistent with the

radial grid used in the VASP code, we insert Eqs. (9), (10), (12),
and (13) into Eq. (16) and evaluate all the integrals using radial
coordinates. In this way, we reach the following expression for
the third term in Eq. (16):

δ(D1
i j − D̃1

i j)
δVemb(r⃗) =


LM

CLM
lml′m′


dr (Qlml′m′(r)

−QL
lml′m′(r)gL(r)

� ∂V LM
emb(r)

∂Vemb(r⃗) , (18)

where i = (l,m) and j = (l ′,m′) denote the angular momenta
of the projectors (|p̃i⟩ and

�
p̃j

�
). CLM

lml′m′ is the integration
of the product of three real spherical harmonics (CLM

lml′m′

=


SLM(r̂)Slm(r̂)Sl′m′(r̂)dr̂), which can be easily calculated
via linear combinations of Clebsch-Gordan coefficients. L, M
are the angular indices for the angular components of the
embedding potential and Qlml′m′ and QL

lml′m′ are the depletion
charges,

QL
lml′m′(r) = (φlm(r)φl′m′(r) − φ̃lm(r)φ̃l′m′(r)) · r (L+2),

Qlml′m′(r) = (φlm(r)φl′m′(r) − φ̃lm(r)φ̃l′m′(r)) · r2.
(19)

The definition of the compensation function gL(r) is given
by Eq. (61) in Ref. 24. In Eq. (18), the most critical step

is evaluating
∂VLM

emb(r )
∂Vemb(r⃗ ) , which defines how the values on the

radial grid vary with respect to the values on the uniform grid.
The speed of computing this term depends on the projection
algorithm we use for Eq. (14). We will compare different

projection algorithms in more detail in Secs. II C and II D
after we clarify the modifications we need to make to the OEP
procedure.

As can be proven analytically, the energy derivative given
by Eq. (16) should be identical to the AE density n(r⃗), consis-
tent with Eq. (3). However, at a typical PW grid density, the en-
ergy derivative significantly differs from the AE density given
on the uniform grid. In Fig. 1, we demonstrate this difference
using the Cl2 molecule as an example (for more computational
details, see Sec. III). It is clear that the AE density n(r⃗) exactly
corresponds to the energy derivative in the interstitial region
but shows much stronger variations in the core region.

The reason for this discrepancy is directly related to the
dual grid scheme adopted in the PAW algorithm. Since the
radial grid is much finer than the uniform grid, the transfor-
mation from the uniform grid to the radial grid must use an
interpolation. Consequently, the change of a potential value
at one uniform grid point effectively leads to changes of
potential values at multiple radial grid points. In other words,

even though the derivative
∂VLM

emb(r )
∂Vemb(r⃗ ) should have rigorously a

δ-function form (F(r)δ (r − |r⃗ |)), it is slightly nonlocal in
practice. Therefore, the resulting energy change is no longer
determined by the density value on one particular point (n(r⃗)),
but rather a smeared average of the densities of the neighboring
region, explaining why the energy derivative grid is always
softer than the AE density grid.

As a consequence, Eq. (3) breaks down and the WY
functional given by Eq. (2) is no longer appropriate, as the
simple formula for the derivative given by Eq. (4) no longer
holds. In practice, the difference between the densities and
the derivatives is so large that no meaningful optimizations
can be done if we use densities as an approximate derivative.
To resolve this problem, we slightly modify the WY func-
tional,

W [Vemb] = EA[nA] + EB[nB] −


Vemb(r⃗) δEref

δV (r⃗)dr⃗ . (20)

FIG. 1. Comparison of different densities for the Cl2 dimer system. The black
solid curve is the soft electron density (ñ+ n̂) and the red dashed curve is the
AE density for the valence electrons (n(r⃗ )). The blue dotted curve is the exact
energy derivative (δE/δV (r⃗ )). All data are plotted along the bond axis of the
Cl2 molecule. The two Cl atoms are located at 4 Å and 6 Å, respectively.
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With the associated derivative,

δW
δVemb

=
δEA

δV (r⃗) +
δEB

δV (r⃗) −
δEref

δV (r⃗) . (21)

Basically, we replace the densities with the energy deriv-
atives. Instead of matching the densities, we match the exact
energy derivatives, which is physically similar since the exact
energy derivative is effectively a smeared average of the den-
sity. We will show in Sec. III that this modification indeed
does not change the essential physics of the original density
functional embedding method. To conduct the optimization,
we have to compute the exact energy derivatives for both
the total system and the subsystems in each iteration, using
Eqs. (16) and (18).

C. Reciprocal-space projection algorithm

As we discussed in Sec. II B, we need to transform the
embedding potential from the uniform PW grid to the PAW
radial grids (Eq. (14)). This projection can be performed using
a reciprocal-space algorithm, which starts with the Fourier
interpolation of the embedding potential,

Vemb(r⃗) =

q⃗k

ṽq⃗keiq⃗k ·(r⃗−R⃗I )eiq⃗k ·R⃗I . (22)

Then, we utilize37

ei k⃗ ·r⃗ = 4π
∞
L=0

L
M=−L

iL jL(kr)SLM(k̂)SLM(r̂) (23)

to expand the phase factor eiq⃗k ·(r⃗−R⃗I ) in spherical harmonics
and spherical Bessel functions, obtaining

Vemb(r⃗) = 4π
∞
L=0

L
M=−L


q⃗k

eiq⃗k R⃗I ṽq⃗ki
L jL(qk ���⃗r − R⃗I

���)

× SLM(q̂k)SLM(r̂). (24)

Here, we define r̂ as the direction of r⃗ − R⃗I . Comparing it with
Eq. (14) yields

V LM
emb (r) = 4π


q⃗k

ṽq⃗keiq⃗k ·R⃗IiL jL(qk · r)SLM(q̂k)

=
4π
N


q⃗k


r⃗n

Vemb(r⃗n)e−iq⃗k ·(r⃗n−R⃗I )iL jL(qk · r)SLM(q̂k).

(25)

Here, r = ���⃗r − R⃗I
���, and r⃗n represents the n-th uniform grid

point in real space, with n = (i, j, k) ranging from (1,1,1) to
(Nx,Ny,Nz). R⃗I is the coordinate of the ion position. N is
the total number of uniform grid points (N = NxNyNz), and
q⃗k is the k-th point in reciprocal space. With this projection
formalism, we can easily derive an expression for

∂V LM
emb(r)

∂Vemb(r⃗n) =
4π
N


q⃗k

e−iq̂k ·(r⃗n−R⃗I )iL jL(qk · r)SLM(q̂k). (26)

The reciprocal-space projection algorithm is a very robust
algorithm that we found well-behaved in all scenarios. How-
ever, the derivative given by Eq. (26) is extraordinarily expen-
sive to compute. The summation in Eq. (26) must be conducted

for every radial grid point r and every uniform grid point r⃗n
near every ion R⃗I . The summation over the entire reciprocal
space (

⃗
qk

) contains millions of terms, making the treatment

of realistic application cases challenging. Nevertheless, the
robustness of the reciprocal-space projection algorithm makes
it a perfect benchmark method for more approximate projec-
tion algorithms. Therefore, we used this algorithm to compute
the exact derivatives in Fig. 1.

D. Real-space projection algorithm

The intrinsic reason for the heavy computational cost of
the reciprocal-space projection algorithm is the nonlocality
of the Fourier interpolation given by Eq. (22). Basically, the
potential value V (r⃗) at an arbitrary position depends on the
potential values on all the reciprocal-space grid points (ṽq⃗k),
which are again determined by the values on all the real-space
grid points (V (r⃗n)). In other words, we need the information
of the entire potential grid before we can find the interpo-
lated potential value at a particular position. This is counter-
intuitive, as V (r⃗) should only be affected by the V (r⃗n) values
on the grid points r⃗n that are spatially close to r⃗ . To overcome
the nonlocality associated with the Fourier transformation, we
need a projection algorithm based on a real-space interpolation
scheme.

The algorithm we adopt is a modified version of Misner’s
decomposition method.38 The basic idea is to first expand the
potential using both angular and radial basis sets,

V (r⃗) =

LM

SLM(r̂)

K

RK(r)VLMK . (27)

Then, we reassemble the radial expansion to obtain V LM
emb (r),

V LM(r) =

K

RK(r)VLMK . (28)

Here, RK(r) are orthonormal radial basis functions (vide infra)
and VLMK are expansion coefficients computed via integra-
tions on a uniform grid,

VLMK =


Ω

SLM(r̂)RK(r)V (r⃗)dr⃗

≈

r⃗m∈Ω

SLM(r̂m)RK(rm)V (r⃗m)dV. (29)

To conduct the integration in Eq. (29), we introduce a
secondary uniform grid {r⃗m} for each ionic core, which is only
defined within the augmentation sphereΩ defined by Raug. The
introduction of the secondary grid is the first major improve-
ment we made to Misner’s original method. It is necessary as
the primary PW grid {r⃗n} is usually not fine enough for the
evaluation of VLMK . In this work, we always adopt a compar-
atively dense dimension of 50 × 50 × 50 for the secondary
grid. To interpolate the potential values on the secondary
grid (V (r⃗m)) from the primary grid (V (r⃗n)), we utilize the
uniform cubic B-spline scheme39 generalized to 3D space.
Basically, we use the localized 1D cubic B-spline functions
defined for each primary grid point as the fundamental basis
set,
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Bi(x) =




0 x ≤ xi − 2∆x
1
6
(2∆x + x − xi)3 xi − 2∆x ≤ x ≤ xi − ∆x

2∆x3

3
− 1

2
(x − xi)2(2∆x + x − xi) xi − ∆x ≤ x ≤ xi

2∆x3

3
− 1

2
(x − xi)2(2∆x − x + xi) xi ≤ x ≤ xi + ∆x

1
6
(2∆x − x + xi)3 xi + ∆x ≤ x ≤ xi + 2∆x

0 x ≤ xi + 2∆x

(30)

(∆x = xi+1 − xi).

We assume that our 3D continuous potential can be expanded
using these basis functions,

V (r⃗) =

i, j,k

f i jkBi(x)Bj(y)Bk(z). (31)

Once we have the expansion coefficients f i jk, we can compute
the potential values on the secondary grid r⃗m using Eq. (31).
The coefficients f i jk are chosen such that the continuous inter-
polated V (r⃗) matches all the values on the primary grid V (r⃗n).
In practice, we need to construct a series of 1D δ-grids for each
of the dimensions to obtain f i jk,

δi(x) =



0 x , xi

1 x = xi

, i = 1, . . . ,Nx. (32)

Following the standard 1D interpolation procedure,39 we
interpolate the i-th 1D δ-grid in the x direction by solving the
following equation for the 1D interpolation coefficients {ai

i′}:



4 1 0 1
1 4 1 · · · 0
0 1 4 0

...
. . .

...

1 0 0 · · · 4





ai
1

ai
2

ai
3
...

ai
Nx



=
6
∆x3



0
...

1
...

0



. (33)

Note that due to permutation symmetry, Eq. (33) needs to be
solved only once for all the i and i′. The resulting coefficients
are very localized, given that ai

i′ vanishes quickly with respect
to increasing |i − i′|. Similarly, we can obtain the interpolation
coefficients {bj

j′} and {ck
k′} for y and z directions, respectively.

Then, we construct the interpolation coefficients for the 3D δ-
grids,

δi jk(x, y, z) = δi(x)δ j(y)δk(z)

= *
,


i′

ai
i′Bi′(x)+

-
*.
,


j′

bj

j′Bj′(y)+/
-
*
,


k′

ckk′Bk′(z)+
-

=

i′j′k′

ai
i′b

j

j′c
k
k′Bi′(x)Bj′(y)Bk′(z). (34)

The final coefficients f i jk for V (r⃗) are computed using Eq. (35),
recognizing that the V (r⃗) grid can be written as a linear

combination of the 3D δ-grids, V (r⃗) = 
i jk V (r⃗i jk)δi jk(r⃗),

f i jk =

i′j′k′

V (r⃗i′j′k′)ai′
i bj′

j ck
′

k . (35)

With this procedure, it is also straightforward to evaluate the

term
∂VLM

emb(r )
∂Vemb(r⃗ ) by exploiting the linearity of the interpolation

scheme. When we consider
∂VLM

emb(r )
∂Vemb(r⃗n) for a particular uniform

grid point n = (i, j, k), we only need to replace the term V (r⃗m)
in Eq. (29) with the δ-grid δi jk(r⃗m) defined in Eq. (34) and
insert it into Eq. (28). The resulting radial function from
Eq. (28) is exactly

∂V LM
emb(r)

∂Vemb(r⃗i jk) =

K

RK(r)

r⃗m∈Ω

SLM(r̂m)RK(rm)δi jk(r⃗m)dV.

(36)

Formally, it is not obvious why this procedure would be
more efficient in evaluating derivatives, as the second summa-
tion in Eq. (36) still involves 50 × 50 × 50 terms, i.e., the size
of the secondary grid. However, noticing that the interpolated
function for the 3D δ-grids (δi jk(r⃗)) is strictly localized around
the primary grid point r⃗n=(ijk), the summation in Eq. (36) can
be substantially reduced. With simple distance cutoffs, most of
the terms with large |r⃗m − r⃗n | can be dropped without losing
accuracy. In fact, the locality of the interpolated δ-grid is a
reflection of the locality of the real-space cubic B-spline inter-
polation algorithm, which is the intrinsic reason for the orders
of magnitude speedup provided by the real-space projection
procedure.

Note that
∂VLM

emb(r )
∂Vemb(r⃗n) , as given by Eq. (36), and thus Eq. (18),

is independent of V (r⃗), further reducing the computational cost
of the interpolation scheme. As long as the grid setup, the PAW
library setup, and the atomic geometry are unchanged, the
results from Eq. (18) remain constant. Consequently, during
the OEP optimization, Eq. (18) needs to be computed only
once in the beginning, and the results can be recycled in further
iterations. This property further speeds up the code by several
orders of magnitude.
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E. Implementation details for real-space projection

In this section, we introduce several important aspects
about the implementation of the real-space projection algo-
rithm.

The most important factor in the real-space projection
is the selection of the radial basis sets RK(r). Instead of the
r-scaled Legendre polynomials used in the original Misner
method, we adopt sinc functions,

RK(r) =


2
Rcut

sin
(

Kπ

Rcut
r
)
/r, K = 1, 2, . . . , Kmax, (37)

where sinc functions are orthonormal within [0,Rcut], which is
a fundamental requirement for RK(r),

 Rcut

0
RK1(r)RK2(r)r2dr = δK1,K2. (38)

In the r → 0 limit, all the sinc functions have well-defined
finite limits, in contrast to the r-scaled Legendre polynomials,
which diverge at short range. Because of this property of
the sinc functions, the integration in Eq. (29) is well-defined
within the entire augmentation sphere. By contrast, in the
original Misner method, the real-space integration can only be
performed within a shell to avoid the numerical instability at
r → 0. This is an another major improvement we made to the
original Misner method.

Although the above procedure is theoretically feasible,
we find that the resulting V LM

emb is still numerically inaccurate
at very short range. Increasing the number of radial basis
functions (Kmax) improves the accuracy but slows down the
computation. Furthermore, higher K values introduce strongly
oscillating basis functions, which require a much finer second-
ary grid for the real-space integration. Compared to a radial
grid, the uniform Cartesian grid lacks the necessary accuracy
close to the center of the sphere, introducing larger numerical
errors. This is an intrinsic problem for uniform grid layouts and
should be avoided also from other considerations. If we Taylor-
expand the potential and project it onto different angular chan-
nels, we can derive the short-range behavior of V LM

emb analyti-
cally,

V LM
emb(r) → αrL(r → 0). (39)

To avoid the problem stated above, we switch to Eq. (39) in
the limit r < ϵ . The value ϵ is usually inversely proportional
to Kmax. As a rule of thumb, we take ϵ = Rcut/Kmax, with Kmax

set to 20 in this paper, which we found high enough for our
applications. The prefactor α is chosen to enforce continuity
of V LM

emb(r).
In the limit r → Rcut, all sinc functions rigorously con-

verge to zero and thus can only expand functions with the
same boundary condition. In general, our arbitrary embedding
potential has finite values over the entire space and thus cannot
be expanded by the sinc functions in a naïve way. To solve
this problem, we introduce a padding region outside of the
augmentation spheres, within which the potential is gradually
switched off by a cosine function,

Ṽ (r⃗) =



Vemb(r⃗) r ≤ Raug

Vemb(r⃗) · cos
((r − Raug)π

2d

)
Raug < r ≤ Raug + d

.

(40)

Here, d is the thickness of the padding region, which equals
to 0.1 Å in this work. Instead of Vemb(r⃗), we actually project
Ṽ (r⃗) and define the cutoff radius as Rcut = Raug + d. After the
projection, we discard the part of V LM

emb(r) in the padding region
and only keep the part within Raug in the PAW equations.

In Eq. (16), the soft charges (ñ + n̂) are almost negligible
in computational cost, while the third term which corresponds
to the core correction is much more expensive. Although the
third term exists only in the augmentation sphere, it is still chal-
lenging to compute the corrections for all the points inside the
sphere. Usually, at the boundary of the augmentation sphere,
the AE and PS wavefunctions are already very close, so the
derivative correction is small. Therefore, we introduce a scal-
ing factor Fcorr. The derivative corrections are only computed
for points within Fcorr · Raug. In practice, Fcorr controls the
balance between accuracy and computational cost: for larger
Fcorr, the derivative is more accurate and the calculation is
more expensive. We have found a reasonable selection of Fcorr

to usually lie in 0.67–0.90, with no significant effects on final
results within this range.

Another problem we need to resolve during the OEP opti-
mization is the unphysical oscillation of the resulting embed-
ding potential. This problem is well-known for OEP opti-
mizations40 and caused by the unbalanced basis sets for the
density and the potential. Furthermore, the frozen core orbitals
cannot react to the potential within the PAW sphere, possibly
leading to unphysically large potential fluctuations. Using the
formula in Ref. 40, we introduce a penalty function in the WY
functional, damping potential oscillations,

W [Vemb] = EA[nA] + EB[nB] −


Vemb(r⃗) δEref

δV (r⃗)dr⃗

− λ


Vemb∇2Vembdr⃗ . (41)

Mathematically, the penalty function unfortunately damps
both physical and unphysical potential fluctuations uniformly.
Therefore, the contribution of the penalty function (controlled
by the parameter λ) should not be too large, lest physical
potential oscillations are damped out. In this work, unless
stated otherwise, we always set λ to 10−5 eV/(V2/Å2), which
we have empirically found to give robust results. We will show
that the physical results derived from the embedding potential
are relatively insensitive to the exact value of λ. Nevertheless,
a more rigorous approach will be needed to solve the ill-
posed OEP problem in PW basis sets, similar to algorithms
put forward for Gaussian basis sets.41

F. Implementation of embedding potential
for all-electron Gaussian type orbitals (GTOs)
calculations in NWCHEM

In this section, we discuss the algorithms we implemented
for the embedded cluster calculations using all-electron GTO
basis sets in NWCHEM.42 Considering a system embedded in
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an arbitrary external potential V , we only have to modify the
one-electron integrals to include the effects of V in a quantum
chemical calculation. The new terms introduced by V are

I =


V (r⃗)G1(r⃗ − R⃗1
I ,a1)G2(r⃗ − R⃗2

I ,a2)dr⃗ . (42)

Here, G1 and G2 are the two primitive Gaussians centered
at atom positions R⃗1

I and R⃗2
I , with exponents of a1 and a2,

respectively.
Normally, this integral can be directly evaluated via a

summation over the uniform grid,

I ≈

n

V (r⃗n)G1(r⃗n)G2(r⃗n)dv. (43)

However, this real-space summation is problematic if the
term G1(r⃗)G2(r⃗) is sharp in the corresponding region. Par-
ticularly, when performing all-electron calculations, the basis
functions describing the core electrons are usually associated
with very large exponents. The typical grid densities adopted in
the VASP-PAW setup are certainly not fine enough for comput-

ing Eq. (43). Notice that I ∝


exp
(
−(a1 + a2)(r⃗ − a1R⃗

1
I
+a2R⃗

2
I

a1+a2
)
)

V (r⃗)dr⃗ , so the sharpness of the integrand is directly controlled
by the total exponent a1 + a2. Therefore, we adopt an alter-
native reciprocal-space scheme if a1 + a2 is larger than 20 a.u.
and R⃗1

I = R⃗2
I = R⃗I (note that when the Gaussians are sharp and

R⃗1
I , R⃗2

I , they do not overlap and the integrand vanishes, so
we only consider the R⃗1

I = R⃗2
I situation here).

We assume that Cartesian functions are used for the
angular part of the primitive Gaussians. So, the two primitive
Gaussians can be written as

G1(r⃗ ,a1) = xi1y j1zk1 exp(−a1(r⃗ − R⃗I)2),
G2(r⃗ ,a2) = xi2y j2zk2 exp(−a2(r⃗ − R⃗I)2).

(44)

Here, (i1, j1, k1) and (i2, j2, k2) are the indices for the angular
parts of the primitives.

We perform a Fourier transformation of V (r⃗) (note that
the potential is relatively smooth compared to the density, so
no ultra-fine uniform grid is needed for this Fourier transform)
and plug it into Eq. (42). Then, we reach the following final
working equation:

I =

k⃗

ṽ(k⃗)ei k⃗ ·R⃗I f (kx, i1 + i2,a1 + a2)

× f (ky, i1 + i2,a1 + a2) f (kz, i1 + i2,a1 + a2). (45)

Here, ṽ(k⃗) is the Fourier transform of V (r⃗) and k⃗ repre-
sents all the reciprocal-space vectors. The integrals f (k, l,a)
=


eik xxle−ax
2
dx can be derived using the following recur-

sion relations:

f (k,0,a) =


π

a
exp

(
− k2

4a

)
,

f (k,1,a) = ik
2a

f (k,0,a),

f (k, l,a) = l − 1
2a

f (k, l − 2,a) + ik
2a

f (k, l − 1,a).

(46)

In this work, we always use Cartesian functions for the
angular part of the basis sets. Theoretically, when spherical
functions are used, we can still perform the calculations in

Cartesians first and transform them to spherical form.43 Nev-
ertheless, once we obtain the modified one-electron integrals,
we conduct the rest of the calculations using the existing code.
We are thus able to carry out embedded quantum chemistry
calculations using any software with the modified one-electron
integrals.

To sum up, with the real-space projection algorithm, we
are able to evaluate the exact energy derivatives ( δE

δV (r⃗ ) ) of
an embedded system in a very efficient way. With the energy
derivatives of the two subsystems and the total reference sys-
tem at hand, we can maximize the WY functional given by
Eq. (20). This maximization eventually leads to the density
functional embedding potential at the PAW level of theory.
All algorithms mentioned in this section were implemented
in a modified version of VASP 5.3.3.29–32 For the embedded
cluster calculations using GTO basis sets, we also developed
an accurate reciprocal-space algorithm to compute the effect
of an arbitrary embedding potential within the one-electron
integrals. This algorithm has been implemented in NWCHEM-
6.5,42 enabling us to conduct embedded cluster calculations
using all-electron GTO basis sets. In Sec. III, we use the code
to compute the density functional embedding potentials for
various test systems; we also demonstrate the robustness of the
algorithm and the embedding method.

III. RESULTS AND DISCUSSION

In this section, we present the results of several test cases.
Unless stated otherwise, all calculations were conducted using
a modified version of VASP with the Perdew-Burke-Ernzerhof
(PBE)44 XC functional and the PAW method. All calculations
were conducted using only Γ-point sampling in reciprocal
space as we only study molecules and large supercells. The
readers are referred to the supplementary material45 for more
computational details for each test case.

A. Chlorine dimer

The first test case we present is the covalently bound Cl2
molecule, serving as proof-of-principle for our approach. Two
chlorine atoms are placed parallel to the z-axis, at the center of
a 10 Å × 10 Å × 10 Å box, with a bond length of 2 Å. Naturally,
the two subsystems are the two chlorine atoms, respectively.

We first examine the quality of the real-space projec-
tion using the reciprocal-space projection results as a bench-
mark. We take the optimized embedding potential of Cl2 and
decompose it into different angular momentum channels us-
ing either real-space or reciprocal-space projection algorithms
(see Fig. 2).

At short range, the potential is sharper and thus more
sensitive to details of the interpolation, so small deviations
can be observed between the two algorithms. Nevertheless,
overall, the real-space algorithm reproduces the more accurate
reciprocal-space results with very high fidelity and much lower
computational cost. This confirms the numerical accuracy of
the algorithm and validates our selection of projection param-
eters introduced in Sec. II.

To investigate the effect of the penalty function, we com-
pare converged embedding potentials with and without
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FIG. 2. Comparison of real-space and reciprocal-space projection results for
the decomposition of the optimized embedding potential of Cl2. The black
curves are the s-channels and the red curves are the pz-channels. Due to sym-
metry, the px and py channels are all zero and not shown in the figure. Solid
lines are real-space projection results and dashed lines are reciprocal-space
projection results.

applying a penalty function (see Fig. 3). Without a penalty
function, the resulting potential features unphysical oscilla-
tions. The penalty function smoothens the potential, yielding
a much more physical shape, with peaks (electron depletion)
located in the core regions and valleys (electron concentra-
tions) in the σ-bond region.

More systematically, we conducted the OEP optimization
with different λ values and investigated the change of the
optimized WY functional values with respect to λ (see Fig.
S145). We observed a sharp decrease of the value of the WY
functional below λ = 10−5 eV/(V2/Å2), mainly corresponding
to the damping of unphysical oscillations. As we discussed
above (Fig. 3), at λ ≈ 10−5 eV/(V2/Å2), a smooth potential can
be obtained, while larger λ values start to damp the physical
variations, which features a slower increase of the WY func-
tional value. Therefore, we will adopt λ = 10−5 eV/(V2/Å2) in
the following study.

As discussed above, care must be taken not to remove
physical oscillations: the figure of merit here is the final corre-

FIG. 3. Embedding potentials along the bond axis of Cl2. The black solid
curve is the potential obtained with the penalty function and the red dashed
curve is the potential obtained without the penalty function. The two Cl atoms
are located at 4 Å and 6 Å.

spondence between the sum of the subsystem densities and the
reference density and the transferability of the final embed-
ding potential to other approaches (i.e., quantum chemistry
codes). For the OEP application required for density functional
embedding, we can thus easily assess the quality of the embed-
ding potential via comparing the densities/energy derivatives
of the subsystems to the reference system (see Fig. 4).

Before optimization (i.e., with Vemb = 0), significant dif-
ferences between the subsystem densities and the reference
system densities appear (the root-mean-square deviation
(RMSD) equals 1.1 × 10−2 e/Å3 for the energy derivative
and 1.0 × 10−2 e/Å3 for the soft charge). This is expected as
the interactions between the two subsystems are completely
missing without embedding potential. After the optimiza-
tion, the energy derivative errors are significantly reduced
(RMSD = 3.4 × 10−4 e/Å3 without penalty function), which
is expected as we were explicitly optimizing them. Moreover,
the differences in densities on the real-space grids are also
greatly reduced (RMSD = 4.6 × 10−4 e/Å3 without penalty
function), just as required by the original definition of the
density functional embedding scheme. This illustrates that

FIG. 4. Differences between the summations of the subsystem densities and the reference densities. Black dotted curves are the differences before optimization
(without embedding potential), red dashed curves are the differences after optimization with penalty functions, and blue solid curves are the differences after
optimization without penalty functions. All the data are plotted along the bond axis of Cl2: (a) energy derivative (δE/δV ) differences and (b) soft charge (ñ+ n̂)
differences.
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our modifications to the original scheme defined by Eq. (20)
do not change the essential physical idea of the original
method.

We also note that the penalty function introduces small but
non-negligible residual errors in the core region for δE/δV .
For the entire 3D grid, the RMSD of the energy derivatives
increases from 3.4 × 10−4 e/Å3 to 7.1 × 10−4 e/Å3 when using
a penalty function. By introducing the penalty function, we
effectively introduce some extra constraints on the potential,
and thus, the density fitting is numerically less accurate. This
shows that the penalty function not only damps unphysical but
also a certain level of physical variations of the embedding
potential, which is almost inevitable. However, the penalty
function is necessary to remove the unphysical oscillations,
which is critical for the robustness and the transferability of
the resulting potential. In order to obtain a potential that can be
utilized in conjunction with different basis sets and methods,
we have to filter out the oscillations on the length scale of the
uniform grid size. As we showed in Fig. 3, the penalty function
accomplished this goal, though with a little compromise in
reproducing the reference densities.

B. Al metal surface

We conduct the density functional embedding calcula-
tions for an Al12 cluster in a 5 × 5 × 4 Al slab surface (see
Figs. 4(a) and 4(b)), which was previously studied using our
ABINIT implementation.14 Using this well-understood metal
system, we will verify that our new implementation is able
to reproduce the same physics demonstrated by our previous
implementations. We would also like to understand the effects
of the PAW scheme on the numerical details of the resulting
embedding potential, compared to the PP calculations. To be
consistent with our previous work,14 no penalty functions are
applied in this case. The embedding potentials obtained from
both VASP-PAW and ABINIT-PP implementations are shown
in Figs. 5(c)-5(e).

The ABINIT-PP potential (Fig. 5(c)) features negative
values mainly in the boundary region between the cluster and
the environment, representing the attractive interaction due to
the metal bonds. Comparison with the VASP-PAW potential
(Fig. 5(d)) reveals two distinct regions: in the core region,
the potential obtained from the PAW calculations shows many
more features compared to the potential from the PP calcula-
tions, as expected since the all-electron PAW approach yields a
more complete description of the core region. In the interstitial
region, the VASP-PAW potential and the ABINIT-PP potential
show excellent agreement, as their isosurfaces are similar in
both size and shape. For a more systematic and quantita-
tive comparison for the interstitial region, we make a scatter
plot comparing the two embedding potentials on a point-by-
point basis (Fig. 5(e)). Due to the effects of PAW scheme on
the interstitial regions, we find a root mean square deviation
of 0.2 V between the two potentials. The PAW wavefunc-
tion gives slightly different densities and response properties
compared to the PP wavefunction, so some numerical differ-
ences are expected. Furthermore, we can never completely rule
out the effects of unphysical oscillations, which possibly vary
with respect to different core region treatment methods. Nev-
ertheless, the nice overall correlation (R = 0.96) between the
two embedding potentials demonstrates that both potentials
capture the same physics in the interstitial region, consistent
with the isosurface plots.

In summary, comparing embedding potentials from the
VASP-PAW and ABINIT-PP calculations shows that our new
implementation is consistent with the old PP-based implemen-
tation. Moreover, we are able to obtain new features in the core
region representing the embedding effects on the core elec-
trons, which were missing from the previous PP calculations.

C. Defects in semiconductors

In this section, we examine the capabilities of the den-
sity functional embedding method for treating defect states

FIG. 5. Embedding potentials for Al slab: (a) and (b) the cross-sectional views of the structures of the Al slab and the Al12 cluster; (c) isosurface of the
embedding potential from the ABINIT-PP calculations, isovalue=−1.206 V; (d) same as (c) for VASP and PAW; (e) scatter plot of the comparison, V ABINIT

PP
versus V VASP

PAW . Points within 1.2 Å (≈Fcorr ·Raug) from the atomic centers are omitted due to the large difference between the PAW and PP wavefunctions at the
atomic centers. The RMSD between V ABINIT

PP and V VASP
PAW shown in (e) is 0.2 V.
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FIG. 6. Bulk and cluster structures of
the test semiconductor systems: (a) bulk
structure of the Sn-doped ZnS; (b) clus-
ter structure of the Sn-doped ZnS; (c)
bulk structure of the Cu-doped ZnS; and
(d) cluster structure of the Cu-doped
ZnS.

in semiconductors. We use a 2 × 2 × 2 64-atom supercell of
zincblende ZnS as our test system and introduce one SnZn
(CuZn) antisite in the center to represent an n-type (p-type)
point defect (see Fig. 6). In this case, we always apply a penalty
function to the WY functional, so we can obtain more physical
and more robust potentials.

For the Sn-doped system, we carve out a cluster con-
taining the central Sn defect and its first and second nearest
neighbors, i.e., a SnZn12S4 cluster. For the Cu-doped system,
we adopt the same cluster size, generating a CuZn12S4 clus-
ter. In the previous cases (homogeneous diatomic molecules
and metals), it was natural to assume that both subsystems
were neutral. However, the partitioning of electrons is much
less straightforward in semiconductors: if we assume covalent
bonds between Zn and S, it is reasonable to cleave the Zn–S
bond homogeneously; if we emphasize the ionic character of
the Zn–S bonds, we should assign all the bonding electrons to
sulfur. It is difficult to determine which way is more physical
as the Zn–S bonds have both covalent and ionic characters.
The DFET requires an appropriate partition as an input and,
theoretically, the optimization process should work for any
electron or atom partitions. Therefore, in the framework of the
density functional embedding scheme, the partition of elec-
trons is an extra degree of freedom that cannot be automatically
optimized but has to be determined a priori. In this work, as we
are trying to reproduce the electronic structure of the central
atom, we will use the Bader charges46 of the central atom
as a gauge to determine the partition. Basically, we optimize
the embedding potentials with different electron partitions and
conduct embedded cluster calculations using a consistent level
of theory (PBE-PW). Then, we obtain the Bader charge of
the central atom from the embedded cluster calculation and
compare it with the supercell value. We will show that deter-
mining the correct charge for the cluster is critical in this study,
and that the Bader charges indeed serve as a good gauge for this
purpose.

Through the analysis described above, we find that
the optimal cluster configurations are [SnZn12S4]18− and

[CuZn12S4]0, respectively (see Table I). In order to confirm that
the embedded cluster models are able to reproduce the correct
physics in the bulk, we conduct embedded cluster calculations
of defect states with a consistent level of theory (PBE-PW) and
compare the projected density of states (PDOSs) at the central
atom with results from non-embedded bulk crystal supercell
calculations of the same defect (see Fig. 7 and Table I).

In Fig. 7(a), the PDOS of the central Sn atom shows a
distinctive peak −0.22 eV below the Fermi level, which is the
fully occupied n-type SnZn state mainly composed of the Sn 4s
orbital. This feature is well-reproduced by the embedded clus-
ter results plotted in Fig. 7(b), with the Sn 4s band located
at −0.23 eV (see also Table I). In Figs. 7(c) and 7(d), similar
agreement is also found for the p-type case, as the embedded
cluster calculation gives a Cu-3d peak position of −0.09 eV,
consistent with the position of the half occupied CuZn defect
state in bulk (−0.01 eV). To verify the role of the embedding
potential, we also provide bare cluster results (i.e., with Vemb
= 0) in Table I. Unsurprisingly, without a proper treatment of
the cluster-environment interactions, the defect states in the
bare cluster all appear at wrong energies. In the SnZn case,
the Sn 4s state is pushed towards lower energies (−0.55 eV),
being no longer a frontier orbital, which is contradictory to
the supercell results. In the CuZn case, the Cu-3d state is fully

TABLE I. Defect state energy levels relative to the Fermi level at 0 eV. Bader
charges (in (e)) of the defect atom of the corresponding system are given in
parentheses.

Defect band position (eV)

Systems Bare calculation Embedded calculation

Supercell with SnZn −0.22 (1.25) . . .
[SnZn12S4]0 0.45 0.12 (1.35)
[SnZn12S4]18− −0.55 −0.23 (1.23)
Supercell with CuZn −0.01 (0.55) . . .
[CuZn12S4]0 −0.45 −0.09 (0.52)
[CuZn12S4]18− −2.00 −1.00 (0.45)
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FIG. 7. PDOS of the central defect atoms: (a) PDOS of Sn in bulk Sn-doped ZnS; (b) PDOS of Sn in the embedded [SnZn12S4]18− cluster; (c) PDOS of Cu in
bulk Cu-doped ZnS; and (d) PDOS of Cu in the embedded [CuZn12S4]0 cluster. All plots are shifted along the horizontal axis such that the Fermi level is located
at zero.

occupied at −0.45 eV, rather than being a partially occupied p-
type state at the Fermi level. For further comparison, we also
performed classical point-charge embedding calculations for
the Sn-doped ZnS system using a scheme previously devel-
oped for more ionic oxide crystals.47 Note that a point-charge
embedding scheme requires us to assign formal charges to each
ion, so we lose the degrees of freedom associated with tuning
the total cluster charges. Moreover, it requires us to terminate
our cluster with anions so we can use simplified effective
core potential (ECP) sites representing the neighboring cat-
ions, so a larger cluster has to be used ([SnZn12S28]30−). The
resulting Sn 4s peak is located at −0.57 eV, much lower than
the values obtained with supercell and our DFET embedded
cluster calculations. Comparing the success of the embedded
clusters with the failure of the bare clusters and point charge
embedding schemes, we emphasize the importance of a proper
embedding potential. Moreover, we confirm that the density
functional embedding is a suitable scheme to generate such a
proper embedding potential.

In Table I, we also demonstrate the effect of the clus-
ter charges on the defect state energy. On the one hand, the
embedded cluster calculations always outperform the bare
cluster calculations regardless of the charges on the cluster,
showing the capability of the embedding potential in all cases.
On the other hand, comparing the negative and neutral cluster
results, we find that the final defect state energies are sensitive
to the cluster charges. Therefore, in order to obtain results
quantitatively comparable with the supercell benchmark data,
we have to adopt an appropriate electron partition. Unfortu-

nately, the optimal choice of the cluster charges is case depen-
dent and there is no simple rule for the charge assignment.
In the SnZn case, the negatively charged [SnZn12S4]18− cluster
outperforms the neutral one, while in the CuZn case, the neutral
[CuZn12S4]0 cluster result is better. As we mentioned above,
we propose to use the Bader charge of the central atom as a
simple index for the electron partition. As shown in Table I,
in the SnZn case, the Bader charge of Sn in [SnZn12S4]18∓ is
1.23 e, in better agreement with the supercell value (1.25 e)
compared to the neutral cluster (1.35 e). Similarly, in the CuZn
case, the Bader charge of Cu in [CuZn12S4]0 is 0.52 e, matching
the supercell value (0.55 e) accurately. In general, whenever
the Bader charge of the central atom agrees with the supercell
calculation, an excellent agreement in defect state energy can
also be found. This shows that Bader charge indeed serves as
a good gauge for the cluster charge assignment.

While being successful in describing the frontier defect
states, the embedded cluster cannot correctly reproduce all
the states in the PDOS plot. Core levels are generally shifted
from their bulk positions and extra states appear due to the
dangling bonds at the boundary. However, these states are also
less important as long as they do not significantly couple with
the frontier defect levels (i.e., those close to the Fermi level), as
only the defect states are the ones in which we are interested.

At the end of this section, we briefly discuss the effects of
the penalty function on the final results. All the results shown
above were computed with λ = 10−5 eV/(V2/Å2). Using the
[SnZn12S4]18− system as an example, we obtain a Sn 4s band
located at −0.28 eV with λ = 5 × 10−5 eV/(V2/Å2), −0.05 eV
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lower than the results we obtained above. Therefore, a factor of
five times change in λ leads to a few hundredths of an eV orbital
energy variation, which is not significant. Our results suggest
that within a certain range, predictions are stable with respect
to the exact value of λ. This is considered to be a good property,
given that our selection of λ is purely based on experience.

To sum up, in this section, we demonstrate the power of
the density functional embedding method in describing semi-
conductor defect states. We showed that the embedded cluster
calculations can reproduce the defect state energy at a consis-
tent level of theory. As a preliminary study, our embedded
cluster calculations were all conducted using DFT-PBE and
consistent PW basis sets for the bulk and embedding poten-
tial calculations. Therefore, we are presently only testing the
capability of the embedding scheme on the DFT level, and not
yet solving PW-DFT’s problem using more advanced methods.
However, this work lays out a solid foundation for future ECW
studies, as it indicates that the embedding potential is able to
accurately describe the cluster-environment interactions at the
DFT level.

D. Potential transferability with respect to GTO
basis sets

As discussed above, we used a periodic PW basis set to
conduct all embedded cluster calculations; however, typical
quantum chemistry programs usually adopt atom-centered
GTO basis functions. Wavefunctions expanded in different
basis sets are likely to have different polarizabilities and thus
could respond differently to the same external potential. There-
fore, the transferability of our results to other basis sets might
be questionable. To understand the sensitivity of our PAW
density-based embedding approach to different basis sets, we
conduct the embedded [SnZn12S4]18− DFT calculations with
different GTO basis sets below.

The GTO embedded cluster calculations were all carried
out with a modified version of NWCHEM-6.5,42 with the
embedding potential function incorporated. In the first five
calculations, we use all-electron basis sets without ECPs,
being consistent with the PAW method in VASP. For the
central Sn atom, we utilize the double-zeta ADZP basis set,
which contains diffusion and polarization functions.48 For
other atoms (S and Zn) inside the cluster, we tested ADZP,49,50

as well as the slightly smaller double-zeta basis set def2-
SVPD.51 In some cases, we also keep part of the basis sets
from the environmental sulfur atoms that directly contact the
cluster. For these “ghost” sulfur atoms, only a few of the most
diffuse shells of the def2-SVPD basis sets are kept while all
other core shells are removed, similar to the approach used
by Barnes et al.52 In this section, we denote the entire basis
set using three labels, describing the basis set we used for the
three different parts individually. For example, (ADZP/def2-
SVPD/2s,2p) indicates that we use ADZP for the central Sn
atom, def2-SVPD for Zn and S atoms, and the two most diffuse
s and p shells from def2-SVPD for the ghost sulfur atoms.
Using these basis sets, we conduct PBE-GTO calculations
with the embedded cluster and identify the molecular orbitals
dominated by the Sn s-functions. Then, we can calculate the
relative positions of the highest occupied Sn s-orbitals with

TABLE II. Sn 4s-orbital positions in the embedded [SnZn12S4]18− cluster,
with GTO basis sets. The PW calculations are the benchmark data taken from
Table I, which was computed using a 500 eV kinetic energy cutoff (see the
supplementary material45).

Basis sets (Sn/Zn,S/ghost S) Sn 4s band position (eV)

PW-500 eV −0.23
ADZP/ADZP/none −0.04
ADZP/def2-SVPD/none −0.37
ADZP/def2-SVPD/2s,2p −0.33
ADZP/def2-SVPD/3s,3p −0.29
ADZP/def2-SVPD/2s,2p,1d −0.24
Def2-SVPD/def2-SVPD/2s,2p,1d −0.24
DZP-DKH/def2-SVPD/2s,2p,1d −0.25
Def2-TZVPD/def2-SVPD/2s,2p,1d −0.10
Def2-TZVPD/def2-TZVPD/2s,2p,1d −0.15

respect to the Fermi energy and compare it with the PW results
from Sec. III C (see Table II).

Comparing the second and the third lines in Table II,
we find a strong basis set dependence for the Sn 4s-orbital
position when no ghost basis set is used. Changing the ba-
sis sets of Zn and S from def2-SVPD to ADZP creates an
orbital energy fluctuation of ±0.1-0.2 eV and both of them
deviate from the PW benchmark value in opposite directions.
Apparently, compared to the systematically converging PWs,
it is more difficult to reach convergence for Gaussian type
basis sets. Some critical parts of the wavefunction might be
missing as Gaussian type functions are localized whereas PWs
are delocalized. Adding ghost basis sets at the cluster bound-
ary region alleviates this problem, as they extend the cluster
basis sets spatially, in particular along the cut covalent bonds,
effectively making it more diffuse. On top of (ADZP/def2-
SVPD/none), we systematically increase the size of the ghost
basis sets and, clearly, the resulting orbital energies gradually
converge to the benchmark value. Eventually, excellent agree-
ment is achieved with the (ADZP/def2-SVPD/2s,2p,1d) basis
sets, with an extraordinarily small error of 0.01 eV.

We also test the transferability of the embedding potential
to GTO calculations with ECPs. We use def2-SVPD51 (which
corresponds to an all-electron basis set for Zn and S but is used
with an ECP for the heavier Sn) for the central Sn atom (see
Table II). Obviously, the (def2-SVPD/def2-SVPD/2s,2p,1d)
result is still in good agreement with the PW benchmark,
even though the embedding potential itself was derived at the
frozen-core all-electron level. This shows that the features of
the embedding potential in the core region are not affecting the
pseudized wavefunction in the interstitial region significantly,
and the embedding potential obtained with PAW can be uti-
lized in both all-electron and ECP calculations.

We further investigate the relativistic effect for the Sn
atoms, considering that no such effect is included in the
previous all-electron GTO calculations. We used the Douglas-
Kroll-Hess (DKH) Hamiltonian53–55 implemented in
NWCHEM and the corresponding DZP-DKH basis set for Sn
developed by Barros et al.56 The result is shown in Table II.
We observe very small changes to the Sn 4s peak position with
the DKH Hamiltonian, showing that relativistic effects are not
very significant in our test case. However, it would certainly be
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more important for even heavier atoms, and in those cases, the
simple non-relativistic all-electron GTO calculations could be
problematic.

While we achieved excellent agreement in double-zeta
calculations, it does not guarantee that we have reached abso-
lute convergence: if we increase the Sn basis set to triple-zeta
level, while keeping the double-zeta description for all the
other atoms (def2-TZVPD/def2-SVPD/2s,2p,1d), we obtain
−0.10 eV for the Sn 4s state, worse than the double-zeta
result. This result is slightly improved with a fully triple-
zeta setup (def2-TZVPD/def2-TZVPD/2s,2p,1d), demonstrat-
ing the importance of a balanced description for the entire
system. However, even the (def2-TZVPD/def2-TZVPD/2s,
2p,1d) calculation is still 0.08 eV away from the PW bench-
mark. Moreover, we notice that in this triple-zeta calculation,
the molecular orbital of Sn 4s state is much more diffuse
and strongly coupled with the boundary states and the Sn p/d
states. This is likely due to the unbalanced description of the
central atom and the rest of the cluster, as well as the unbal-
anced description of the Sn 4s orbitals and other components
with higher angular momentum. All of these observations
indicate the complexity of the GTO basis sets, and careful
considerations have to be taken in such calculations. Generally
speaking, the uncertainty associated with the finite basis set
effects is around 0.1 eV, and the double-zeta GTOs with proper
ghost basis sets on the boundary region seem to achieve the
most balanced description, leading to the best agreement with
the PW benchmark.

Overall, these results illustrate that with carefully chosen
basis sets, the embedding potential is fairly robust with respect
to transfer to GTO calculations even though it was initially
derived using only PW basis sets. We highlight the importance
of the ghost basis sets right outside of the cluster boundary, at
the position of the nearest neighbors, to sufficiently support the
cut covalent bonds. We showed that incorporating these ghost
basis sets is a very efficient way to reproduce the diffuse nature
of the PW basis functions. As long as we construct the basis
sets carefully, we are able to reach consistent results using
both PW and GTO basis sets. This lays out another important
foundation for future ECW studies using GTO basis sets.

IV. SUMMARY AND CONCLUSIONS

In this work, the density functional embedding method
was successfully implemented in VASP, in conjunction with
the PAW formalism. We found that the dual grid scheme
adopted in PAW leads to extra complications and requires
slight modifications to the original density functional embed-
ding formulae. A new real-space projection algorithm was
developed as an alternative to the more expensive reciprocal-
space algorithm to transform the embedding potentials be-
tween different types of grids. This algorithm leads to fast eval-
uations of energy derivatives and enables conducting embed-
ding potential optimizations at the PAW-DFT level of theory.

The embedding potentials at the PAW level are consistent
with our previous results using norm-conserving PPs in the
interstitial region and exhibit additional features due to the all-
electron nature of PAW in the core region. Apart from proving
the correctness of our implementation, this observation has

further implications in practice. For the test calculations shown
in Sec. III D, we utilized all-electron GTO basis sets to be truly
consistent with PAW. This choice is potentially problematic
since all-electron calculations might be both slow and incorrect
(as they usually miss relativistic effects) for systems contain-
ing heavy elements. In such cases, it is more appropriate to
perform ECW calculations employing ECPs. The agreement
between the PAW and norm-conserving PP embedding poten-
tials in the interstitial region indicates that the PAW embedding
potential is also likely to be transferrable to ECP calculations.
The difference in the core region should have less impact as
the pseudo-wavefunction in this region is largely damped and
relatively rigid. To verify these conjectures, we performed an
ECP calculation using the SnZn system as an example, and the
transferability of the embedding potential in both all-electron
and ECP GTO calculations was confirmed. Above all, all the
simple tests with covalent bonding and metals prove that the
obtained embedding potentials are physically meaningful and
numerically stable.

After we verified the fidelity of the resulting embedding
potential, we examined its capability for describing defect
states in semiconductors. We found that at a consistent DFT
level of theory, the embedded cluster correctly reproduces the
electronic structure of the point defects in non-embedded su-
percell calculations. Furthermore, the results of the embedded
cluster calculations are very robust with respect to both PW
and GTO basis sets. All these observations are very encour-
aging for future ECW studies on semiconductor defects using
the methodologies introduced in this work.

Essentially, our work makes it possible to conduct first-
principles calculations embedded in any arbitrary external
potential within the PAW method. It also allows us to eval-
uate energy derivatives with respect to an external potential
efficiently. In fact, this new function offers us an efficient
way to conduct OEP calculations within PAW in general and
density functional embedding is merely one of many possible
applications. Therefore, we hope to see additional applications
for our algorithm in the near future.
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