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Stacking two layers of two-dimensional materials slightly twisted relative to each other causes significant
alternations of the physical properties of the resulting bilayer. For graphene, at the right twist angle, the electronic
band structure features a flat band at the Fermi level that gives rise to interesting many-body physics such as
correlated insulators or superconducting states. Likewise, a finite twist angle modifies the phonon band structure.
A reciprocal space continuum model including lattice reconstruction due to relaxation allows us to investigate the
continuous evolution of the phonon band structure with twist angle. At intermediate angles, we find a complicated
structure of the phonon density of states around the frequency of the layer breathing mode, that is substantially
broadened by the moiré-induced interaction with the acoustic phonon branches. We infer optical activities and
suggest Raman experiments to validate our predictions. Our results suggest that suitably twisting structures may
manipulate both phonon and electron properties of such a system, and thus set the stage to test electron-phonon
contributions to the observed correlated states.
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I. INTRODUCTION

The potential of vertically stacking two-dimensional (2D)
materials to form heterostructures [1,2] has started to at-
tract interest soon after the first isolation of single-layer
graphene [3]. With a growing number of new materials, which
can be isolated as 2D single- or few-atom layers [2,4] and
steadily improving experimental control over these materi-
als, the plethora of possible stacking combinations creates a
vast playground for materials science research. The obser-
vation of superconductivity [5] close to 1.1◦ rotated twisted
bilayer graphene (tBLG) has recently fueled a renewed in-
terest in a special subset of such heterostructures, namely
twisted bi- and multilayer structures [6–12]. The experi-
mental observations now range from correlated insulator
phases [13] intercepted with magic angle superconductivity
in twisted bilayer graphene [5,7,14–26], superconductivity in
twisted trilayer graphene [27,28] to highly correlated states
[19,29–35] and (anti)ferromagnetic signatures [32,36–40].
However, experimental devices may include twist angle disor-
der and relative displacements between the layers, as well as
anharmonicities, that manifest themselves also in the phonon
properties [41] complicating the observation of such effects.
In tBLG at angles close to the magic angle, theory predicts
perfectly flat bands [1,42] induced by interlayer hybridization,
with correlation effects leading to multiple topological tran-
sitions [43,44]. Flat bands are also seen as the main driving
mechanisms for moiré-induced superconductivity [29]. Nev-
ertheless, understanding the precise nature of the observed
effects is still an ongoing debate [45–47].

Beyond the modification of the electronic structure, the
moiré-induced superlattice also modifies the phononic disper-
sion relation [9,48–52]. These modifications are much more
subtle, yet in particular the low-energy shear and breathing
modes [52] might be critical in the understanding of some
correlated phenomena. Given the critical role of electron-

phonon coupling for understanding conventional BCS-like
superconductors, a quantitative understanding of the moiré-
induced changes seems key in unraveling the exotic supercon-
ducting state of tBLG.

Efforts to capture the experimental observations regard-
ing the electronic structure numerically have been significant
and reach from effective many-body Hamiltonians such as
the Hubbard model [53] or Fermi-liquid theory [54], Hatree-
Fock diagonalization schemes [55] to single-particle supercell
models [56,57]. One particularly successful method, initially
introduced by Bistritzer et al. [1] models the interaction
between the low-energy bands in momentum space using
a single-particle continuum model. Such a description al-
lows for studying the continuous evolution of the electronic
structure and related physical properties with twist angle,
without the need to resort to large real-space supercells. In
the tBLG case one single parameter describes the effect intro-
duced by the moiré periodicity. This formalism has meanwhile
been applied to the electronic band structure of a number
of other heterostructures [58,59]. We have recently derived
a similar model to describe the evolution of the phonon
band structure in transition metal dichalcogenides [52]: the
moiré couples low-energy acoustic modes and layer-breathing
modes (LBM), strongly modifying the phonon band struc-
ture at low twist angles. In the present paper we extend our
model to more accurately include subtle long-range interac-
tions induced by the moiré. We investigate the moiré-induced
coupling of phonon branches in twisted bilayer graphene as
a function of twist angle and identify a series of avoided
crossings that strongly modify the phonon band structure and
thus the phonon density of states at low twist angles.

The low-energy phonon modes in tBLG have already been
investigated through several models in the literature [9,48–
51]. In-plane asymmetric acoustic phonon modes were found
to form minibands separated by gaps [48]. When dealing
with very small twist angles, these modes can be related
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FIG. 1. Comparison of pristine BLG (top row) and twisted BLG (bottom row). (a) Pristine bilayer unit cell. (b) Schematic representation
of the two new modes appearing in bilayer systems: the layer breathing (LB) mode and the shear mode (S). (c) Pristine BLG Brillouin zone,
spanned by reciprocal lattice vectors G1 and G2. A red arrow denotes the path from � to K . (d) Schematic of the phonon band structure of
BLG plotted along the first third of the red arrow from panel (c). [(e), (f)] For a moiré supercell at small twist angles, we can neglect the local
rotation between atoms in the top and bottom layer. Then, there is only a local displacement d(r) between the atoms in the top and bottom
layer that varies within the supercell. (g) Relation of reciprocal representations of pristine and twisted BLG: twisted Brillouin zones of the
top and bottom layer (large red and blue hexagons), as well as moiré Brillouin zones (grey) rotated by 90◦ with respect to the pristine cells.
Lightly shaded red hexagons exemplify the coupling between the first shell of neighboring � points. The small red arrows connecting moiré �

to K explain the concept of phonon backfolding (see main text). (h) Schematic evolution of the phonon bands at � with twist angle. Note the
similarity to (d) due to phonon backfolding. The LB and TA/LA feature a pronounced avoided crossing (shaded yellow area) induced by the
coupling to neighboring moiré � points [see (g)].

to the oscillation of the domain wall boundaries between
commensurate AB sites. These modes were referred to as
phason modes [9,49]. From a group-theoretical perspective,
these moiré phonon modes and the underlying gaps emerge
from an additional mismatch symmetry related to the in-plane
translation of one lattice with respect to the other, reconciling
these two seemingly different viewpoints in the small an-
gle limit [50]. Conversely, our model operates in momentum
space, and is thus not limited to a discrete set of commensurate
angles. This allows calculating the continuous evolution of
the phonon density of states with twist angle, irrespective
of whether the underlying supercell is commensurate or not.
We can thus focus on the evolution of the avoided crossing
between acoustic and breathing modes. We identify band
gaps formed in the phonon band structure, in line with the
gaps found in the literature [48,50]. In particular, an avoided
crossing emerges at the twist angle where the LBM becomes
degenerate with the backfolded acoustic branch at �. Relax-
ation of the bilayer system and the associated change in the
supercell geometry strongly affect the phonon coupling. In
particular around 2◦, the LBM broadens considerably due to
the different interlayer spacings within one moiré cell [60].

Our findings are applicable to (homo)bilayers beyond
bilayer graphene: The acoustic and layer-breathing modes
will—for most values of the interlayer coupling and the in-
plane speed of sound—feature a crossing. The moiré induces
an interaction between these two modes, strongly modifying

the phonon band structure at the crossing, thus opening a
further playing field towards designed material properties.

This paper is organized as follows: We first present our
model for the phonon band structure of homobilayer systems
including strain in Sec. II. We then apply our model to twisted
bilayer graphene (Sec. III), and discuss the impact of the
moiré on the phonon density of states as a function of twist
angle. We conclude with a discussion of the applicability of
our results to the general case of homobilayers. We provide
a comprehensive definition of the moiré dynamical matrix
in Appendix A, and briefly discuss the role of the cutoff in
reciprocal space in Appendix B, and of strain in Appendix C.

II. MODEL

A pristine honeycomb lattice is defined by the two unit
vectors a1 = a(1, 0) and a2 = a

2 (−1,
√

3), which in turn de-
termine the reciprocal cell vectors G1,2 via ai · G j = 2πδi j .
Aligning two lattices on top of each other [see Fig. 1(a)]
does not affect the in-plane periodicity in the unit cell,
creating a pristine bilayer with a hexagonal Brillouin zone
[Fig. 1(c)] spanned by G1 = 2π√

3a
(
√

3, 1) and G2 = 4π√
3a

(0, 1).
When considering the phonons of this bilayer as compared to
the individual monolayers, two obvious new modes emerge
[Fig. 1(b)]: the layer-breathing mode (LB), where the in-
terlayer spacing oscillates, and the (two) shear modes (S),
corresponding to a relative in-plane motion of the two layers.
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FIG. 2. Real space (left column) and reciprocal space (right col-
umn) representation of a twisted honeycomb bilayer for various twist
angles. As the real-space unit-cell size decreases, the reciprocal unit-
cell size increases. The red arrow in the second column demonstrates
how the distance between the neighboring G̃ points expands for
larger twist angles. The first row refers to the magic twist angle
(2.65◦) for which the moiré BZs perfectly fit inside the pristine one.
The other two rows refer to nonmagical angles (4◦ and 10◦).

In general, the low-energy phonon band structure of such a
bilayer will thus, to first order, feature the acoustic modes
of the monolayers (LA, TA, and the parabolic ZA typical for
two-dimensional crystals) as well as the shear and breathing
modes [Fig. 1(d)]. At a specific q value the breathing mode LB
(determined by the interlayer coupling) and the linear acoustic
branches, LA and TA, will cross. In homobilayers where each
layer features at least σh symmetry, this crossing is protected
by symmetry (different parity with respect to the out-of-plane
coordinate z).

Combining two such lattices with a relative twist angle �

creates a moiré superstructure, forming a large quasi-supercell
in real space [61], with a correspondingly small reciprocal
one (Fig. 2). The moiré lattice vectors in the small twist an-
gle limit are connected via LM1,M2 = − 1

�
ẑ × a1,2. Reciprocal

lattice vectors for the twisted bilayer system can be similarly
obtained as G̃1,2 ≈ −�ẑ × G1,2. Generally, an arbitrary twist
angle will not yield a commensurate unit cell and, conse-
quently, Bloch’s theorem does not necessarily apply. This
inconvenience greatly complicates the theoretical modeling

of the electronic structure [1,47]. Using a continuum model
in reciprocal space [1] allows treatment of incommensurate
bilayer structures. It can be used to calculate a low-energy
electronic band structure of twisted bilayers by introducing
a weakly position-dependent interlayer hopping to the low-
energy Dirac electrons in each layer. The Hamiltonian is
periodic with the moiré period, and instead of Bloch bands,
one can theoretically approach the system by using moiré
bands. This model was extended and adjusted for ab initio
electronic structure calculations by Jung et al. [59]. The same
framework, however, can be transferred to the phononic sys-
tem with some changes [52].

A finite twist angle changes the local electronic environ-
ment of each atom. For small twist angles, the local rotation
between unit cells in the top and bottom layers can be ne-
glected in favor of only considering a rigid displacement
vector d(r) between the unrotated top and bottom layer [see
Figs. 1(e) and 1(f)]. In the small angle approximation, d(r)
can then be explicitly written as

d(r) ≈ −�ẑ × r, (1)

while the reciprocal vector G rotates into G̃(�, G) ≈ −�ẑ ×
G. All displacements d(r) lie within the unit cell of the
pristine lattice. Consequently, one can map each local con-
figuration at a point r of the moiré supercell to a rigid
displacement d(r) in so-called configuration space mapped on
the unit cell of the pristine lattice.

We aim to calculate the phonon band structure of the moiré
superstructure. Phonon eigenmodes ω are typically calculated
as the eigenvectors (and associated eigenfrequencies) of the
dynamical matrix D of the crystal,

D(q) j, j′ = 1√
MjM ′

j

∑
R−R′

eiqRCj, j′ (R − R′)e−iqR′
, (2)

with indices j, j′, running over the 3N degrees of freedom of
the moiré unit cell. The entries of D are the Fourier transforms
of the Hessians C containing the interatomic force constants,
typically obtained from density functional perturbation the-
ory [62–64]. We focus on the regime of small twist angles,
when the pristine unit cell is much smaller than the moiré
supercell. Unfortunately, exactly calculating the 3N × 3N ma-
trix of force constants for a supermoiré with N � 5000 atoms
quickly becomes unfeasible. The key insight is that for a given
twist angle, there is a continuous, bijective mapping between
the index of an atom j in the moiré supercell, its position in the
unit cell R j , and the local stacking d at that point in the cell.
Strain and the resulting distortion may locally warp this map
as discussed below, yet it will remain continuous and bijective.
Based on d( j) we can rewrite the force constants in Eq. (2) as

Cj, j′ = ∂2V

∂r j∂r j′
→ Cα,α′ (R − R′|d), (3)

with indices α, α′ running over the degrees of freedom in one
pristine bilayer unit cell only, and an explicit dependence on
the position within the moiré. Rotating a linear combination
of the large moiré unit cell vectors via �ẑ × LM gives a
linear combination of the pristine unit-cell vectors ai. Com-
bined with Eq. (1) this leads to the expression d(r + LM) =
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d(r) + a, confirming that d(r) is periodic with moiré period-
icity LM and maps onto the pristine unit cell with periodicity
a. Furthermore, we assume d(r) is sufficiently smooth over
the area of one pristine unit cell denoted by subscript p to
approximate d(r) ≈ d(Rp). This assumption is valid for small
twist angles, when the pristine unit cell is much smaller than
the moiré supercell. The variation of the force constants with
d can therefore be expanded in terms of pristine reciprocal
lattice vectors G,

Cα,α′ (R′′|d) =
∑

G

Cα,α′ (R′′|G)e−idG. (4)

This Fourier transformation can be considered as a perturba-
tive expansion. Given the much smaller Brillouin zone of the
twisted superstructure, the phonon dispersion of the pristine
bilayer [e.g., along the red arrow in Fig. 1(c)] is backfolded
at the new Brillouin zone edges. The lowest-order contribu-
tion (i.e., the zeroth-order Fourier component) is given by
the average of the force constants over all stackings. The
resulting phonon band structure would consist of the back-
folded phonon branches of twisted bilayer graphene. The
higher Fourier components in Eq. (4) describe the spatial
variations of the atomic stacking induced by the moiré, due
to the variations in the respective force constants within the
moiré supercell. As a result, small but important couplings
between the backfolded branches emerge. Here we extend
our framework to more accurately treat these moiré-induced
interactions between backfolded phonon branches. We calcu-
late the phonon band structure of tBLG and evaluate several
derived quantities to elucidate the effect of the moiré on struc-
tural properties. For a full derivation and technical details, see
Appendix A.

To obtain the Fourier expansion required in Eq. (4), we
sample configuration space using a 10 × 10 grid. For each
of these one hundred d values, we perform a density func-
tional perturbation theory (DFPT) calculation [64]. Note that
each calculation only involves four atoms in the bilayer unit
cell except the explicitly q-dependent intralayer contributions
which require a 5 × 5 cell. We can thus parametrize the lo-
cal electronic structure of the much larger moiré supercell,
including the energy V (d) of the local alignment d. For each
local alignment d, we fix the relative positions of the atoms in
the bilayer plane, and relax the layer spacing. In the absence
of strain, the geometrical mapping from a position r in the
supercell to d(r) of Eq. (1) is sufficiently smooth to warrant
this approximation. The assembly of D(q) using the Fourier-
transformed force constants obtained from individual (cheap)
DFT calculations of the bilayer unit cell then represents an
efficient yet highly accurate approach. Note that most of these
individual calculations do not correspond to a fully relaxed
geometry (as d is fixed), and thus do not represent physical
Hessians. Indeed, the individual calculations only serve to
provide parameters for approximating the force constants in
Eq. (4), and thus ultimately the dynamical matrix in Eq. (2),
which is physical. Since the coupling elements vary smoothly
as a function of position within the moiré, an obvious strategy
to reduce the problem size is to truncate the Fourier expansion
in Eq. (4), substantially reducing the problem size. Before dis-
cussing the approximations and validity of such a truncation,

FIG. 3. Generalized stacking fault energy in configuration space.
The pristine unit cell size indicates the scale. AA and AB indications
highlight typical stacking configuration in the corresponding real
space picture.

we include strain and the resulting relaxation of the lattice, as
described in the following paragraphs.

Each local d corresponds to a specific local
(mis)alignment, and an associated stacking energy. Assuming
no lattice relaxation, the mapping d(r) is simply given by
Eq. (1). However, the large size of the moiré unit cell for
small-angle tBLG allows the lattice to relax by enlarging
energetically favorable stacking areas. At very small angles
� < 2◦, the resulting geometric relaxation of the moiré
pattern leads to extended regions of energetically favorable
AB stacking separated by domain walls. This reconstruction
has already been experimentally observed [65–67] and
numerically parameterized [9,51,52,57,68–70], proving
that twisted structures are not a simple rigid shift of the
atoms. By contrast, at large twist angles � > 10◦, the moiré
superstructure becomes too small to allow for meaningful
relaxations. Modeling the relaxation between these two
limiting cases is critical to correctly capture the electronic
and phononic properties of the lattice. We use a continuum
elasticity model first suggested by Nam et al. [57] to calculate
the effects of lattice reconstruction in tBLG. In this picture,
the relaxation is described as a distortion of the simple
geometrical mapping of Eq. (1). We denote by ut and ub the
absolute local displacements of the top and bottom layer from
the rigid honeycomb lattice, and then

d(r) → d(r) + ut (r) − ub(r). (5)

UB describes the interaction between layers as an effective
generalized stacking fault energy (GSFE), see Fig. 3. Integrat-
ing the potential profile over space yields the total interlayer
binding energy

UB[ut , ub] =
∫

V [ut (r) − ub(r)]d2r. (6)

The potential profile depends on the local stacking configu-
rations. We therefore calculate it in configuration space as a
function of the displacement vector d. As it is periodic within
the pristine unit cell the simplest option for its functional de-
pendence is V [ut, ub] = ∑

G cG cos((ut(r) − ub(r) + d(r)) ·
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G). The elastic energy is defined as [57]

UE =
2∑

l=1

∫
1

2

{
(λ + μ)

(
u(l )

xx + u(l )
yy

)2

+ μ
[(

u(l )
xx − u(l )

yy

)2 + 4
(
u(l )

xy

)2]}
d2r (7)

with the typical values of graphene’s Lamé factors λ ≈
3.5eV/Å2 and μ ≈ 7.8eV/Å2, which characterize the stiff-
ness of the lattice. Reducing the interlayer binding energy
(UB) involves straining the membrane and thus increasing the
intralayer elastic energy (UE). The competition between these
two contributions results in a minimized total potential energy
functional with respect to the relative displacement between
the two layers forming an Euler-Lagrange set of equations.
The energy functional can be written as

Utot = UB[ut , ub] + UE[ut ] + UE[ub]. (8)

Minimization of Utot typically decreases the size of AA
stacked regions, and reduces the symmetry of the superstruc-
ture (see Fig. 9).

After determining the geometry of the relaxed supercell,
we proceed with calculating the phonon band structure based
on Eq. (2). Due to the spatial dependence of d of the force
constants in Eq. (3), these matrices become non-diagonal in
reciprocal space within the given model. We assemble the
moiré dynamical matrix as a Fourier sum of the force con-

stants for all configurations,

Dm
α,α′ (q, q′) = 1√

MαMα′
·
∑
R,R′

∑
G

Cα,α′ (R′|G)

× eiq′R′
ei(q−q′−G̃)R, (9)

where the matrix form is indicated with a bar. Since ut and ub

both depend on the twist angle � when considering relaxation
effects, the angle dependence enters the dynamical matrix
through the displacement vector d(r). From Eq. (5) it follows
that

D(q′ | d) → D(q′ | d + ut − ub) → D(q′|d,�), (10)

where we have dropped writing the r dependence of d, ut ,
and ub for brevity. For each twist angle �, instead of a rigid
d shift, we use Eq. (5) to obtain D(q′ | d,�) and perform its
Fourier transform for each angle independently. For calculat-
ing only the frequencies close to the central � point, further
approximations can be made. We separate the sum Eq. (9)
in two terms, G = 0 and G �= 0, and only keep the q depen-
dence in the diagonal terms (G = 0) of the moire dynamical
matrix. In the small-angle approximation (|G̃| 	 |G|) we can
reduce D(q′ | G �= 0) to D(� | G �= 0). Furthermore, since
|D(q | G)| quickly approaches zero as |G| increases we trun-
cate the reciprocal expansion after just a few unit vectors.
In the simplest model [52] this would mean truncating the
expansion to the six nearest neighbours, leaving us with the
moiré dynamical matrix

D
m

(q) ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D(q | 0) D(� | G1) D(� | G2) · · · D(� | G6)

D
†
(� | G1) D

(
q + G̃1 | 0

)
D

†
(� | G2) D

(
q + G̃2 | 0

)
...

. . .

D
†
(� | G6) D

(
q + G̃6 | 0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

An alternative way to understand the additional matrix dimen-
sions of Eq. (11) is to consider a basis change of the full
dynamical matrix of the moiré superstructure from real space
to Fourier space (see Appendix A 2). Such a unitary transfor-
mation leaves the eigenvalues invariant. Restricting the matrix
dimensions to, e.g., the six neighboring � points as in Eq. (11)
then corresponds to truncating the Fourier basis, since the ma-
trix elements for larger G vectors quickly decay. The number
of G vectors to consider obviously depends on the size of the
moiré supercell, i.e., on the twist angle. At small twist angles,
a larger number of moiré backfolded phonon branches (i.e., a
larger number of Fourier basis elements) should be considered
using a similar energetic cutoff. For this reason, a small twist
angle moiré dynamical matrix includes a larger number of
moiré �̃ points (see Fig. 2) and thus features a larger di-
mension, depending on the number of moiré BZs contained
inside the large pristine one [denoted by a circle in Fig. 1(g)].
The off-diagonal elements in the moiré dynamical matrix are
responsible for coupling one specific G̃ point to the first shell

of its neighboring ones [red shaded hexagons in Fig. 1(g)]
and therefore, also for degeneracy lifting (see Appendix A 2).
Indeed, considering too few interactions in momentum space
results in unphysical discontinuities in the phonon band struc-
ture (see Appendix B). To avoid such artefacts, we increase the
cutoff radius with decreasing twist angle, carefully ensuring to
obtain a converged phonon band structure. As we have veri-
fied numerically, our phonon band structures are converged
with respect to the number of included G̃ points—or, put
differently, with respect to the number of Fourier components
considered in the expansion of Eq. (4). While we focus on
phonons in the present paper, we note that a similar model
could be applied in the derivation of electron-phonon matrix
elements for a continuous range of twist angles.

III. APPLICATION

Having established the low-energy continuum model for
phonons in homobilayers we now apply the model to twisted
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bilayer graphene. Only considering the interaction between
the original � point and its six nearest neighbors [i.e.,
Eq. (11)] for tBLG produces a band structure of (6 + 1) ×
12 = 84 phonons due to the twelve branches backfolded in
the moiré Brillouin zone at the � point and its six neighbors.
Small twist angles require a correspondingly larger (outer)
cutoff since even more backfolding occurs, resulting in an
overall larger dynamical matrix dimension (for details see
Appendix A).

Similar to the pristine case, the usual transverse and lon-
gitudinal acoustic modes dominate the low-energy phonon
spectra [see schematic in Fig. 1(d)]. Longitudinal, transverse,
and out-of-plane acoustic (optical) modes are denoted as usual
by LA(O), TA(O), and ZA(O). However, in bilayers two types
of new modes emerge: the shear (breathing) modes involve
parallel (perpendicular) relative motion of the two layers [see
Fig. 1(b)].

Beyond these special bilayer modes, the effect of a fi-
nite twist angle is twofold: (i) the large real-space supercell
results in several phonon branches and (ii) the coupling me-
diated by the moiré potential lifts the degeneracy between
these branches and couples the acoustic and breathing modes
[compare grey and blue lines in Fig. 4]. The strong d depen-
dence of the moiré dynamical matrix is responsible for the
finite coupling between these modes. The induced avoided
crossings are a major effect of the moiré potential, and can
serve as a measure of strength of the variation in coupling. We
first discuss the evolution of the LBM frequency with twist
angle. At very small twist angles, the energetically favorable
AB stacking dominates the breathing mode frequency. Note
that neglecting relaxation will lead to a quite broad LBM
peak already at � → 0 (see red lines in Fig. 4). Conversely,
accounting for too few interactions within the moiré dynami-
cal matrix (i.e., a too low cutoff) strongly underestimates the
spread of these avoided crossings (see Appendix B for a more
detailed comparison). Once the two acoustic modes cross with
the LBM at 1◦ and 2◦ degrees, (see arrows in Fig. 4), a compli-
cated peak structure emerges in the phonon density of states
(see rightmost panels in Fig. 4). While smaller Raman shifts
for the breathing modes are more challenging to measure,
good setups can provide resolutions of the order of a few
cm−1 for the breathing modes, as, e.g., in the angle-resolved
evolution of the breathing mode frequency for MoS2 [52]. The
modulations in breathing mode width and frequency should
thus be well visible in Raman measurements of the LBM at
these small twist angles. Note that such a broad Raman peak
could also be (miss)interpreted as due to inhomogeneities in
the sample, which is obviously not the case for our model.
High but realistic experimental resolution should be able to
resolve the substructure at � ≈ 3 − 6◦. At even larger twist
angles, the interlayer spacing increases as the coupling be-
tween the twisted layers is reduced, which strongly reduces
the spread of its peak in the phonon density of states (PDOS).

We focus next on the evolution of the shear mode with
the twist angle. For zero coupling, the shear mode at the
central � point resides at a frequency of 10 cm−1 (see Fig. 4),
featuring only a weak angle dependence. At very low twist
angles, relaxation of the moiré lattice leads to the appearance
of phasons related to vibrations of the boundaries between
AB regions [9,49]. At such boundaries, the local stackings

FIG. 4. Twist angle dependent evolution of phonon modes. Left
panel: Evaluated at the central � point as a function of twist angle.
Central panel: Evaluated along the path � → K at twist angle 2◦.
Right panel: Density of states at twist angle 2◦. The contributions
of individual parts of the model can be clearly assigned. When the
� off-diagonal contributions are neglected (cyan lines) no coupling
between individual modes is observed, when relaxation is neglected
(red lines) imaginary frequencies emerge at small twist angles, caus-
ing an unstable lattice. Only including both contributions (dashed
lines) resembles a realistic phonon dispersion scenario.

change rapidly, and the membrane is not able to relax to
the respective equilibrium distances for each stacking. In this
context, we need to reevaluate the approximations involved
in evaluating the force constants of Eq. (4) in light of the
remapping in Eq. (10). At the boundaries between AB regions,
the stacking changes rapidly over a relatively short distance—
consequently, the lattice cannot relax to the corresponding
layer spacing at each stacking. In our formalism, we evaluate
the different dynamical matrices at fixed distances for each d,
choosing the equilibrium spacings for each stacking. Conse-
quently, the dynamical matrices we calculate are taken at the
wrong layer spacing—leading to a poor description of these
phason modes by our approach (see also Appendix D). For
the same reason, we also observe negative phonon frequen-
cies at intermediate twist angles between 4◦ and 7◦. Lattice
relaxation at small twist angles offsets this effect as the lattice
corrugation allows for relaxation to the respective equilibrium
distances at the high-symmetry points of the moiré. Indeed,
neglecting the corrugation entirely leads to much larger imagi-
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FIG. 5. Projected phonon bandstructure on (a) the central � point and (b) on the out-of-plane component of the eigenvectors.

nary contributions also at small angles (see red lines in Fig. 4).
At large twist angles � > 8◦, relaxation no longer plays a
role (i.e., red and grey lines coincide for � > 8◦ in Fig. 4).
For intermediate twist angles 4◦ < � < 7◦ as well as phason
modes, however, our model underestimates the shear mode
frequency. For those angles the interlayer spacing is smaller
than what we assume due to the mechanical constraints im-
posed by the lattice geometry. Given the comparatively weak
dependence of the force constants with layer spacing in van
der Waals bondings, we do not expect this approximation to be
problematic at high energies, where the phonon band structure
is dominated by the high-energy vibrations of the covalent
bonds within each lattice. The backfolding effect depends on
the size of the moiré BZ, or the twist angle (see Fig. 5).
The slope of the shear mode appears steeper as the angle
increases due to the increase of the distance between � and
K (see Fig. 2). As a consequence, the ZA branches backfold
at lower frequencies for smaller twist angle, producing an
indistinguishable multitude of modes at, e.g., � = 1◦. For
very small twist angles, the LA and TA modes backfold,
and the breathing mode eventually disappears among them.
A pronounced avoided crossing emerges for � > 3◦. Gen-
erally, the expected angle � for an avoided crossing can
be calculated if the LBM frequency and the slopes of the
acoustic branches are known for the system in question, lead-
ing to the qualitative picture shown in Fig. 1(h). As for the
shear mode, due to its steep slope, its contribution to the
PDOS will be quite small. By projecting the phonon disper-
sion on the out-of-plane axis or on the central � point (see
Fig. 5), one can distinguish, i.e., which acoustic branches
originate at the central � as well as which breathing mode
branch. The flat modes at the frequency of 80 cm−1 corre-
spond to the modes originating entirely at neighboring �

points. In the out-of-plane projection, one can easily distin-
guish the two contributions, namely the flat breathing mode
and the ZA phonon mode. Both of them strongly contribute
to the total PDOS, leaving it almost unaltered after projecting

on the out-of-plane axis. For small twist angles, the missing
contribution from the total PDOS will thus be the one from
LA and TA backfolded branches. The projected phonon dis-
persions can be calculated by weighting the frequencies with
the corresponding norm of the eigenvectors distributed over
the central BZ for the central �-point projection, or belong-
ing to their z component for the out-of-plane projection. To
elucidate the changes in the dispersion with twist angle, we
calculate the evolution of the PDOS with the twist angle (see
Fig. 6). The dominant contribution corresponds to the flat and
only weakly angle-dependent breathing mode at 75 cm−1. The
experimentally observed breathing mode frequency value of
94 cm−1 [71] is not obtained here, due to the use of LDA
functionals. While overestimating the binding energy, LDA
functional underestimates the phonon energies. As the twist
angle increases, one branch of the breathing mode disap-
pears merging with the acoustic modes, while another one
emerges—the two form an avoided crossing. The second peak
at larger twist angles derives from the modes originating at
neighboring moiré � points. At very small twist angles the
system may relax considerably, leading to an intricate struc-
ture. The stability of such a relaxed supercell influences the
phonons in the system and the main differences lie in the small
frequency range around 80 cm−1. In the relaxed case, there
is a sharp maximum at 81 cm−1 because the lowest-energy
AB stacking and its associated LBM frequency dominate the
supercell geometry. A stripe-like pattern continues for larger
twist angles, where the lattice enters the rigid regime with very
weak coupling between the two layers. The weak twist-angle
dependence in this regime is expected from the reduced size
of the supermoiré unit cell, smaller corrogation and weaker
interlayer interactions [52,72]. This is also the reason why we
can employ the small twist angle approximation for angles up
to 10◦: the influence of the moiré at these angles is small any-
way. In the rigid case, a much broader feature around the main
contribution appears. The same feature is visible in Fig. 4,
with merged and dispersed modes in the relaxed and rigid case
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FIG. 6. Phonon density of states. The first two columns show the phonon density of states in the rigid and relaxed regime. The third
column represents an out-of-plane projection of the eigenmodes, while the last two columns show a central � point projection. A discontinuous
transition between � < 1◦ and � > 1◦ is the effect of the energetic cutoff used in the calculation. For very small angles, a large number of
small BZs should be included in the calculation, but due to numerical feasibility, the largest outer cutoff (see Fig. B in Appendix) we use is 12.
In other words, as the angle decreases, the outer cutoff is increasing, but we limit its maximum value to 12, which becomes insufficient and we
see a discontinuity in the PDOS. At small twist angles, the modes are “pushed” to smaller energies, making the contributions at larger energies
inaccessible in the calculation if additional BZs are not included in the calculation.

respectively. However, it is not the relaxation that broadens
the LB mode, but the off-diagonal moiré dynamical matrix
elements. The overall “stripe-like” appearance of the PDOS
is a direct consequence of the low-energy band structure in
Fig. 5. As the angle decreases, the majority of the backfolding
occurs at lower frequencies, leading to the appearance of a
larger number of flat modes contributing significantly to the
density of states and creating a set of displaced maxima.

We finally discuss projections of the phonon eigenmodes
on the out-of-plane components of the eigenvectors and the
central �. By projecting the phonon modes on the out-of-plane
component of the eigenvectors, one can identify which modes
feature out-of-plane movement of the atoms. The breathing
mode represents the motion of the two graphene sheets per-
pendicular to their plane of propagation and therefore has the
largest contribution to the corresponding projected density of
states. At low twist angles, the corresponding PDOS features
a reduced contribution below 80 cm−1, due to missing in
plane acoustic modes in the out-of-plane projection. These
features are well highlighted by the color-coded out-of-plane
projection in Fig. 5(b). The projected phonon density of states
on the central � point reveals the modes, which originate in
the central � point and serves as an approximation of the
optical activity in, e.g., Raman measurements. The peak at low
frequencies corresponds to the optically active shear mode,
which at small twist angles � < 1◦ has a finite frequency
at the � point and a dispersion flat enough to show visible
contribution [see Fig. 5(a)]. For larger twist angels, the con-
tribution at low frequency belongs to the ZA branch, which
reaches higher energy values as the angle increases. The two
peaks at 75 cm−1 and 80 cm−1 belong to the breathing mode,
which after an avoided crossing with the acoustic modes,

splits into two branches visible in the projected band structure.
The difference between the relaxed and the rigid calculation
is more evident when projecting onto the central � point. It is
clear how the imaginary frequency shear mode contributions
to the PDOS are largely reduced in the relaxed case. The
relaxation also effects the width of the avoided crossing with
the LBMs: The coupling to neighboring � points broadens
the LBMs, while relaxation at very small twist angles narrows
them again.

It is instructive here to compare to the case of TMD
bilayers, which feature a similar effect of the moiré. The
position of the crossing between breathing and acoustic modes
is determined (beyond the atomic weight of the constituent
atoms) by two independent numbers: the slope of the acoustic
branch (determined by the intralayer coupling) and the en-
ergy of the breathing mode of the pristine bilayer (related to
the interlayer coupling). Due to the substantial difference in
weight, the graphene breathing mode is substantially higher
in frequency, and the velocity of sound (i.e., the slope of the
acoustic branches) is larger. For bilayer graphene, the crossing
thus occurs at twist angles of around two degrees (as opposed
to roughly four degrees in MoS2), i.e., at a much larger size
of the moiré superstructure. As a consequence, the variations
in interlayer spacing are much larger, and the effect of lat-
tice relaxation is stronger for graphene, as apparent through
the much wider spread of the breathing mode frequencies
in tBLG.

IV. CONCLUSIONS

In conclusion, we have presented a reciprocal-space model
for describing moiré-induced modifications of the phonon
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band structure of twisted homobilayers. Our model includes
the relaxation of the lattice, using a membrane model, as well
as the full coupling between all backfolded phonon branches.
We identify an avoided crossing between the layer breathing
mode and the acoustic modes, that should be present for
most homobilayers—at a specific twist angle determined by
the breathing mode frequency and the slope of the acoustic
branches (speed of sound). We apply our model to twisted
bilayer graphene, and investigate in detail the evolution of
the phonon density of states with twist angle. Indeed, we
find strong modulation of the phonon density of states with
twist angle around θ ≈ 2◦ where the avoided crossing occurs:
A broad peak emerges when the backfolded acoustic modes
become degenerate with the layer breathing mode at �. We
expect the same qualitative behavior for other homobilayers,
allowing for the targeted tailoring also of phononic properties
by suitable twisting. In particular, a suitable combination of
material parameters could yield a bilayer where avoided cross-
ings in the electronic and phononic band structures appear at
similar twist angle, opening the door for interesting electron-
phonon coupling.
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APPENDIX A: MATHEMATICAL DERIVATION AND
ELEMENTS OF THE MOIRÉ DYNAMICAL MATRIX

Phonon band structures are typically calculated in the har-
monic approximation by expanding the total potential energy
to second order in the atomic displacements. Phonon energies
are then given as the eigenvalues of the dynamical matrix D. In
the following, we present two complementary derivations of
our formalism. We will first consider the dynamical matrix of
a pristine bilayer unit cell, with an additional variation of force
constants caused by the moiré lattice. This spatial dependence
breaks translational invariance when going from one bilayer
unit cell to the next. As a consequence, the associated dy-
namical matrix becomes nondiagonal in reciprocal space. In a
second derivation, we focus directly on the dynamical matrix
of the full moiré supercell in real space. We show that both ap-
proaches ultimately lead to the same expression—considering
both provides valuable insights into the approximations em-
ployed.

1. Non diagonal dynamical matrix in momentum space

Consider the dynamical matrix for a pristine bilayer (BL),

DBL(q)α,α′ = 1√
MjM ′

j

∑
R−R′

eiqRCj, j′ (R − R′)e−iqR′
. (A1)

Indices α, α′ run over the 3n degrees of freedom in each
pristine unit cell with n atoms. Lattice vectors R and R′ run
over the pristine unit cells. The entries of D are the Fourier
transforms of the Hessians C containing the interatomic force

constants. In a Bloch periodic system, interatomic force con-
stants only depend on the relative position of the two unit
cells, Rp − Rp′ . However, in the twisted bilayer system, the
relative local stacking d(r) changes as a function of position
within the moiré supercell, resulting in an additional position
dependence. We consider here the case where the twist angle
is small (θ < 10◦) and the moiré supercell is large. In this
case, the gradual change of the geometry with local stacking
leads to a slow, smooth variation of the Cα,α′ in real space
when going from one pristine bilayer unit cell to the next. We
can map the unit cell positions R within the moiré supercell
onto the relative local stacking d((R + R′)/2) ≈ d(〈R〉)—we
can then evaluate the forces at the appropriate stacking,

Cα,α′ (R − R′|d(〈R〉)) = ∂2V (d)

∂rα∂rα′
, (A2)

where V (d) denotes the potential energy surface at a given
local stacking d. Due to its importance, we denote the ad-
ditional local dependence of the force constants on position
after a “|” in Eq. (A2)—this dependence breaks translational
invariance of Eq. (A1), leading to a nondiagonal dynamical
matrix in momentum space for a moiré (m),

Dm
α,α′ (q, q′) = 1√

MαMα′
·
∑
R,R′

eiRqCα,α′

× (R − R′|d(〈R〉))e−iR′q′
. (A3)

Wavevectors q and q′ belong to the small moiré BZ, while the
vector d(Rp) belongs to configuration space. The goal is now
to simplify the real-space positional dependence. The first step
is to make use of the moiré periodicity of the twist angle
induced displacement vector d, which for a small twist angle
� can be obtained as −�ẑ × R when using the usual small
angle approximations [sin(�) ≈ � and cos(�) ≈ 1]. Vector
d is periodic with the moiré period d(R) ≈ d(R + LM ). Since
the size of the pristine unit cell and moiré unit cell are related
via a = �ẑ × LM , the second term in d(R + LM ) = −�ẑ ×
(R + LM ) simplifies to a. Therefore, one can expand Cα,α′ in
terms of pristine reciprocal lattice vectors G,

Cα,α′ (R − R′|d) =
∑

G

Cα,α′ (R − R′|G)e−idG. (A4)

Note that vector d belongs to configuration space and G to its
Fourier transform. This rewrite is useful if the Cα,α′ (R − R′|d)
vary sufficiently slowly in space as to represent a reasonably
smooth function—we find this to be true numerically; indeed,
a 10 × 10 grid of DFPT calculations provides enough data to
interpolate the d dependence.

Introducing R′′ = R − R′, Eq. (A3) can be written as

Dm
α,α′ (q, q′) = 1√

MαMα′
·

∑
R,R′′,G

Cα,α′ (R′′|G)

× e−idGeiR′′q′
eiR(q−q′ ). (A5)

The product d · G can be rewritten in terms of the moiré
reciprocal lattice vectors G̃,

d · G = −�ẑ × R · G = �ẑ × G · R = G̃ · R. (A6)
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Equation (A14) then becomes

Dm
α,α′ (q, q′) =

∑
R,G

eiR(q−q′−G̃)

· 1√
MαMα′

∑
R′′

Cα,α′ (R′′|G)eiR′′q′

︸ ︷︷ ︸
Dα,α′ (q′|G)

. (A7)

Finally, we can recognize the standard expression for a dy-
namical matrix in a Bloch periodic system, with an additional
G dependence, which we denote again using the “|” symbol.
We thus obtain an expression for the moiré dynamical matrix
elements

Dm
α,α′ (q, q′) =

∑
R,G

eiR(q−q′−G̃)Dα,α′ (q′|G). (A8)

The vertical bar between the vectors G and q′ emphasizes that
they represent variables in reciprocal configuration space and
reciprocal moiré space respectively. The additional sum over
unit cells R results in a delta function,

Dm
α,α′ (q, q′) =

∑
G

δ(q − q′ − G̃)Dα,α′ (q′|G). (A9)

The nondiagonal form of Eq. (A9) in q space still needs clar-
ification: the δ function in Eq. (A9) ensures that q and q′ are
identical up to a reciprocal lattice vector G̃. One can thus write
the full dynamical matrix D

m
(q) by explicitly introducing the

reciprocal lattice vectors as matrix dimensions, as written in
Eq. (11). In such a way, we obtain a large matrix (with a
corresponding large number of eigenvalues) accounting for
the many backfolded branches of the phonon band structure
of the large moiré supercell.

To construct the moiré dynamical matrix from a pristine
dynamical matrices following Eqs. (A7) and (A4) we use a
Fourier sum,

Dα,α′ (q′|G) =
∑

d

Dα,α′ (q′|d)eidq′
. (A10)

The Fourier sum over all the stacking combinations inside a
large moiré unit cell yields an additional q′ dependence. We
perform the summation over a uniform mesh of 10 × 10 d
values. Note that relaxation effects warp the straightforward
relation between d and R, as discussed in the main text,
Eq. (10).

We finally discuss the approximations used in the diagonal
and off-diagonal entries of the matrix representation Eq. (11).
In the small twist angle regime, we can evaluate � phonon
frequencies close to the � point in moiré BZ neglecting the
q dependence in the dynamical matrix D(G|q) for G � q.
The pristine reciprocal lattice vectors spanning a configura-
tion space BZ are much larger in magnitude that the moiré
reciprocal lattice vector |G̃| 	 |G|. This leaves only the q
dependence along the diagonal of the model dynamical ma-
trix. Also, one needs to truncate the sum over G vectors.
|Dκα,κ ′α′ (G|q′)| decays quickly with increasing |G| [52]. At
large twist angles, we can approximate by cutting the expan-
sion after the first shell of G points—see, e.g., in the first
column of Fig. 4. The additional phonon bands one would ob-
tain with a larger cutoff shell then only adds (near-)degenerate

additional lines to the phonon band structure. However, for
smaller angles, such an approach proves not accurate enough,
due to the small size of the Brillouin zone more � points
need to be considered. We then define an outer cutoff, which
is denoted by a black circle in Fig. 1(g) and clearly varies
with the twist angle (see Fig. 2). Its diameter is defined by the
condition that it must not be larger than the pristine reciprocal
unit vector, while it progressively includes more neighboring
�̃ point shells. All of the moiré G̃ points, which fit inside
it, define and enlarge the dimension of the moiré dynamical
matrix via a pristine G cutoff (G and G̃ are connected by
G̃ ≈ �ẑ × G). The inner cutoff refers to the coupling between
neighboring G̃ points as denoted by red shaded hexagons in
Fig. 1. An inner cutoff of one implies coupling of only one G̃
to the first shell of its neighbors. The inner cutoff limits the
off-diagonal elements in the moiré dynamical matrix. Not all
of them are listed in Eq. (11) of the main text for brevity. For
example, coupling between G̃1 as the central G̃ point and its
neighboring shell, i.e., G̃2 would be described by D(G̃1|G2).
We also neglect the q′ dependence in these terms.

2. Moiré dynamical matrix in real space

To better elucidate the relation between the full, exact
dynamical matrix of the moiré superstructure and the momen-
tum space representation of Eq. (11), we present an alternate
derivation that initially considers the large real-space moiré
supercell. The dynamical matrix of the entire moiré is, of
course, much larger: We now consider p = 1, . . . , nc pristine
unit cells that form the supermoiré unit cell, with n atoms per
pristine unit cell and a total of N = nc × n atoms in the moiré
supercell. The full dynamical matrix is thus of size 3N × 3N ,
and thus prohibitively large to calculate. It can be written as

Dm
pα,p′α′ (q) = 1√

MαMα′
·
∑
Lm

eiRpqCpα,p′α′ (Lm)e−iRLm ,p′ q.

(A11)

The spatial dependence of the force constants now appears
explicitly as the p-dependence of the full Hessian matrix of the
moiré, Cpα,p′α′ . We explicitly add the Bloch phases for each
unit cell (as opposed to just going from one moiré supercell
to the next) for easier comparison with the momentum-space
based derivation above. An additional phase will appear for
the small number of interactions between atoms in different
moiré supercells, written as the sum over the moiré lattice
vectors Lm above. Note that we do not sum over the unit cells
within the moiré in Eq. (A11), as p, p′ now explicitly appear
as matrix indices.

As before, we want to exploit the slow variation of the
local stacking within the moiré. More specifically, the large
D

m
matrix consists of a repetition of almost, but not exactly,

identical blocks due to the slow spatial modulation of the cou-
pling within the moiré. Such a pattern suggests a basis change
to a Fourier basis for the unit cell indices p, p′ for the matrix
D

m
. Since we now explicitly consider the two positions p and

p′ as matrix indices, we can interpret the Fourier expansion of
the Cpα,p′α′ as a basis transformation from position-basis into
a reciprocal basis, with a transformation matrix

Up,g = eidpGg (A12)
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TABLE I. Some examples of the twist angle and its correspond-
ing cutoff magnitudes (see Fig. 7) and the full dimension of the
dynamical matrix.

� Outer cutoff Dyn. matrix dimension

10◦ 3 444 × 444
5◦ 5 1092 × 1092
2◦ 16 9804 × 9804
1◦ 28 29244 × 29244
0.5◦ 57 119028 × 119028

where the g represent matrix indices in the basis of reciprocal
lattice vectors,

Cpα,p′α′ =
∑
g,g′

Up,gCgα,g′α′U †
g′,p′ . (A13)

At this point, we have merely performed a basis change from a
position-basis indexed with p to a Fourier basis indexed by g.
If all g are included, and all distances between layers are eval-
uated at the correct distances taken from the relaxed supercell,
this basis change does not introduce any approximations. In
practice, Eq. (A13) again constitutes a Fourier transform of
the force constants, formally written as basis transformation.

Inserting the Fourier expansion (A13), Eq. (A11) can be
written as

Dm
αp,α′ p′ (q)=

∑
g,g′

Up,g ·
∑
Lm

1√
MαMα′

Cgα,g′α′ei(Rp−R′
pLm )

︸ ︷︷ ︸
Dm

αg,α′g′

U †
g′,p′ .

(A14)

Since the eigenvalues of a matrix are independent of the basis,
we can now directly calculate the eigenvalues of Dm

gα,g′α′ . The

g, g′ run over the reciprocal lattice vectors G̃g. For the off-
diagonal elements, the G̃ can be rewritten as G using Eq. (A6).
Enumerating a few matrix elements then provides exactly the
matrix structure as in Eq. (11).

It is instructive to consider the contribution of the different
Fourier components of the Fourier expansion in Eq. (A13). If
the force constants vary slowly with d, as we have verified
numerically, we can truncate the Fourier basis after a few
terms, since the matrix elements for larger G̃g will be zero
anyway. Consequently, the basis change of the matrix D from
configuration space to its Fourier transform vastly reduces
the size of the problem at hand: While Dm

gα,g′α′ is formally
still an 3N × 3N matrix, we can consider only a small subset
of the g, g′ along the reciprocal lattice points closest to �,
arriving precisely at the momentum-based matrix form for D

m

of Eq. (11). Both approaches thus yield identical expressions.
Indeed, the final size of the problem needed to be considered
(see Table I) is precisely given by those terms in the Fourier
transformation of the force constants, Eq. (A13) that still yield
large contributions.

In the second formulation, we more explicitly approximate
the moiré dynamical matrix, and use the Fourier transform
of the force constants as a means to reduce the problem
size. There are two approximations included here: Explicitly,
we drop the Fourier contributions for large G̃g, as the force

FIG. 7. Example of the variable outer cutoff with values 1, 2, 3.

constants vary sufficiently smoothly as a function of d to be
well represented by a few Fourier components. Implicitly, we
have to evaluate the force constants for a specific vertical
distance—which might not be the correct vertical distance
inside the moiré when including relaxation effects. We discuss
the implications of the latter approximation in Appendix C.

The dynamical matrix dimension grows rapidly as the
angle decreases. Since each � point only interacts with its
neighbors, the resulting matrix structure is quite sparse, mak-
ing the calculation computationally feasible.

APPENDIX B: PDOS CONTRIBUTIONS
FROM ONLY THE FIRST G̃ SHELL

When cutting off the expansion after the first shell of �̃

points as in (11), we obtain the PDOS in Fig. 8. While for
larger angles (� > 5◦), the two pictures (Figs. 6 and 8) al-
most coincide, it is for smaller angles that this approximation
fails. If we focus first at frequencies ω → 0, contributions
from only the first shell of �̃ points creates the ZA mode
contribution, which parabolically, but slowly extends to larger
frequencies as the angle � increases. In Fig. 6 the same
happened at much lower values of the twist angle due to
the heavier nuclei of the bilayer transition metal resulting in
smaller phonon frequencies. The inclusion of a larger number
of G̃ point shells, allows the ZA mode to backfold more often,
and its frequency thus reaches higher values. Probably the
most striking effect in Fig. 8 is how narrow and modest the
LBM becomes due to the smaller number of the off diagonal
elements in the dynamical matrix, which broaden it. Although
the largest PDOS contribution still belongs to the LBM due to
its flat dispersion, a large part deriving from its backfolding
and TA mode avoided crossings is clearly missing. However,
one can in this case more easily see how the LBM in the
relaxed case features one sharp maximum for the smallest
twist angle, while in the rigid case there are three strong
contributions. While the out-of-plane projection shows the
same features as the full PDOS, we notice that the central
�-point projection is actually not too far off from the full
result (see Fig. 6), since projecting onto the central � point,
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FIG. 8. Calculation with only the contributions from the first shell of neighboring G̃ accounted for (outer cutoff = 1, see Fig. 7). In
comparison with Fig. 6, a discontinuity happens at a much larger angle as the higher energy contributions become insufficient sooner, e.g., for
ω ≈ 50 cm−1 and � ≈ 6◦.

at low twist angles, misses a more complete dispersion from a
smaller number of phonon modes.

APPENDIX C: RELAXED AND RIGID TWISTED
BILAYER GRAPHENE

The effects of atomic relaxation become important for
small twist angles (in our case <2◦), for which the real space
unit cell is of considerable size. Although weak, van der Walls
interlayer forces manage to outweigh the strong intralayer
bonding, making the energetically favorable AB stacking take
up a larger portion of the bilayer than it would for a simple
rigid twist (see Fig. 9).

The relaxation-induced atomic displacement is obtained
from the total energy of the series of DFT calculations, which
sample the configuration space. In Fig. 3, the GSFE potential
is mapped onto a pristine unit cell and describes the optimal
position for the second layer on top of the first one. The
minimum is achieved for AB stacking. Mathematically, the
simplest form of the interlayer binding energy as a function

of displacement d is proposed, which preserves its periodicity
with the pristine unit cell,

UB[ut , ub] =
∫

V [ut (r) − ub(r)]d2r,

(C1)
V [ut , ub] =

∑
G

cGcos((ut (r) − ub(r) + d) · G),

cG are the Fourier coefficients of GSFE in reciprocal space.
Since (C1) depends on the relaxation and twist angle induced
relative displacement of the two layers, one needs to solve
the relaxation problem self-consistently, by total energy func-
tional minimization (8).

APPENDIX D: THE ROLE OF CORRUGATION

While our theory works well for the evolution of the breath-
ing modes, and the associated crossings with the acoustic
branches, we find our calculations incorrectly predict an imag-
inary shear mode frequency at intermediate twist angles. To
elucidate the cause, we note that we neglect the dependence

FIG. 9. Difference between the rigid (a) and relaxed (b) real-space tBLG structure at � = 1.018◦. Schematics on the left show the typical
AA and AB stackings. In the relaxed regime, the AB stacking dominates the super cell.
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of the corrugation amplitude on twist angle. For small twist
angles (relaxed regime), the various stacking regions [AA vs
AB(BA)] can be viewed as completely independent. AA as
well as AB(BA) stacking configurations are approximately at
their equilibrium layer separation [73] (AA ≈ 3.53 Å and
AB ≈ 3.33 Å). In the transition regime (with increased twist
angle, i.e., reduced super cell size), the stacking configurations
move closer to each other. Therefore, the corrugation  =
AA − AB is reduced and the layer separation becomes
more uniform, AA ≈ AB ≈ 3.33 Åin the large angle limit.
This is not accounted for by the assembled dynamical matrix,
as we compute each local stacking at its equilibrium distance.
Including this effect, i.e., a reduced corrugation, would cause

AA to decrease and AB to increase. These changes in-
crease the differences in generalized stacking fault energies
(GSFE) between the AA and AB regions due to its exponential
sensitivity on layer separation. A larger GSFE difference will
increase strain in the system. This contribution will shift the
point at which the relative weight of the AB(BA) area starts
to decline to a larger twist angle, causing the shear mode to
stay approximately constant up to a larger twist angle. By
contrast, without considering the effect of reduced corruga-
tion at intermediate twist angles on the GSFE, the S mode
frequency starts to decrease at a smaller twist angle due to the
decrease of the relative weight of the AB regions as seen in our
calculations.
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[24] B. Roy and V. Juričić, Unconventional superconductivity in
nearly flat bands in twisted bilayer graphene, Phys. Rev. B 99,
121407(R) (2019).

[25] J. González and T. Stauber, Kohn-Luttinger superconductiv-
ity in twisted bilayer graphene, Phys. Rev. Lett. 122, 026801
(2019).

155415-13

https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1038/nature12385
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.aac9439
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/s41563-020-00873-5
https://doi.org/10.1103/PhysRevB.99.205134
http://arxiv.org/abs/arXiv:1907.12338
https://doi.org/10.1103/PhysRevResearch.2.013335
https://doi.org/10.1038/s41565-020-0682-9
https://doi.org/10.1038/s41563-019-0346-z
https://doi.org/10.1038/s41586-019-0957-1
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/s41586-020-2459-6
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1103/PhysRevLett.121.087001
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevX.8.041041
https://doi.org/10.1103/PhysRevB.98.241407
https://doi.org/10.1103/PhysRevB.98.075154
https://doi.org/10.1103/PhysRevB.98.214521
https://doi.org/10.1103/PhysRevB.98.205151
https://doi.org/10.1103/PhysRevLett.121.217001
https://doi.org/10.1103/PhysRevB.99.121407
https://doi.org/10.1103/PhysRevLett.122.026801


N. GIROTTO, L. LINHART, AND F. LIBISCH PHYSICAL REVIEW B 108, 155415 (2023)

[26] Y. Wang, J. Kang, and R. M. Fernandes, Topological and ne-
matic superconductivity mediated by ferro-SU(4) fluctuations
in twisted bilayer graphene, Phys. Rev. B 103, 024506 (2021).

[27] Z. Hao, A. M. Zimmermann, P. Ledwith, E. Khalaf, D. Haie
Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, and
P. Kim, Electric field-tunable superconductivity in alternating-
twist magic-angle trilayer graphene, Science 371, 1133 (2021).

[28] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P.
Jarillo-Herrero, Tunable strongly coupled superconductivity in
magic-angle twisted trilayer graphene, Nature (London) 590,
249 (2021).

[29] L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, Super-
conductivity and strong correlations in moiré flat bands, Nat.
Phys. 16, 725 (2020).

[30] L. Zhang, Y. Wang, R. Hu, P. Wan, O. Zheliuk, M. Liang, X.
Peng, Y.-J. Zeng, and J. Ye, Correlated states in strained twisted
bilayer graphenes away from the magic angle, Nano Lett. 22,
3204 (2022).

[31] L. Rademaker and P. Mellado, Charge-transfer insulation in
twisted bilayer graphene, Phys. Rev. B 98, 235158 (2018).

[32] A. Thomson, S. Chatterjee, S. Sachdev, and M. S. Scheurer, Tri-
angular antiferromagnetism on the honeycomb lattice of twisted
bilayer graphene, Phys. Rev. B 98, 075109 (2018).

[33] J. W. F. Venderbos and R. M. Fernandes, Correlations and
electronic order in a two-orbital honeycomb lattice model for
twisted bilayer graphene, Phys. Rev. B 98, 245103 (2018).

[34] J. Pizarro, M. Calderon, and E. Bascones, The nature of cor-
relations in the insulating states of twisted bilayer graphene,
J. Phys. Commun. 3, 035024 (2019).

[35] J. Kang and O. Vafek, Non-abelian dirac node braiding and
near-degeneracy of correlated phases at odd integer filling
in magic-angle twisted bilayer graphene, Phys. Rev. B 102,
035161 (2020).

[36] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe,
T. Taniguchi, M. A. Kastner, and D. Goldhaber-Gordon, Ev-
idence of orbital ferromagnetism in twisted bilayer graphene
aligned to hexagonal boron nitride, Nano Lett. 21, 4299 (2021).

[37] T. Huang, L. Zhang, and T. Ma, Antiferromagnetically ordered
Mott insulator and d+id superconductivity in twisted bilayer
graphene: A quantum Monte Carlo study, Sci. Bull. 64, 310
(2019).

[38] J. Kang and O. Vafek, Strong coupling phases of partially filled
twisted bilayer graphene narrow bands, Phys. Rev. Lett. 122,
246401 (2019).

[39] K. Seo, V. N. Kotov, and B. Uchoa, Ferromagnetic Mott state in
twisted graphene bilayers at the magic angle, Phys. Rev. Lett.
122, 246402 (2019).

[40] C. Repellin, Z. Dong, Y.-H. Zhang, and T. Senthil, Ferromag-
netism in narrow bands of moiré superlattices, Phys. Rev. Lett.
124, 187601 (2020).

[41] H. Ochoa and R. M. Fernandes, Degradation of phonons in
disordered moiré superlattices, Phys. Rev. Lett. 128, 065901
(2022).

[42] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro
Neto, Graphene bilayer with a twist: Electronic structure, Phys.
Rev. Lett. 99, 256802 (2007).

[43] K. Hejazi, C. Liu, H. Shapourian, X. Chen, and L. Balents,
Multiple topological transitions in twisted bilayer graphene
near the first magic angle, Phys. Rev. B 99, 035111
(2019).

[44] L. Classen, C. Honerkamp, and M. M. Scherer, Competing
phases of interacting electrons on triangular lattices in moiré
heterostructures, Phys. Rev. B 99, 195120 (2019).

[45] B. Lian, Z. Wang, and B. A. Bernevig, Twisted bilayer
graphene: A phonon-driven superconductor, Phys. Rev. Lett.
122, 257002 (2019).

[46] F. Wu, A. H. MacDonald, and I. Martin, Theory of phonon-
mediated superconductivity in twisted bilayer graphene, Phys.
Rev. Lett. 121, 257001 (2018).

[47] S. Carr, S. Fang, and E. Kaxiras, Electronic-structure methods
for twisted moiré layers, Nat. Rev. Mater. 5, 748 (2020).

[48] M. Koshino and Y.-W. Son, Moiré phonons in twisted bilayer
graphene, Phys. Rev. B 100, 075416 (2019).

[49] H. Ochoa, Moiré-pattern fluctuations and electron-phason cou-
pling in twisted bilayer graphene, Phys. Rev. B 100, 155426
(2019).

[50] Q. Gao and E. Khalaf, Symmetry origin of lattice vibration
modes in twisted multilayer graphene: Phasons versus moiré
phonons, Phys. Rev. B 106, 075420 (2022).

[51] R. Samajdar, Y. Teng, and M. S. Scheurer, Moiré phonons
and impact of electronic symmetry breaking in twisted trilayer
graphene, Phys. Rev. B 106, L201403 (2022).

[52] J. Quan, L. Linhart, M.-L. Lin, D. Lee, J. Zhu, C.-Y. Wang,
W.-T. Hsu, J. Choi, J. Embley, C. Young et al., Phonon renor-
malization in reconstructed MOS2 moiré superlattices, Nat.
Mater. 20, 1100 (2021).

[53] J. Zang, J. Wang, J. Cano, and A. J. Millis, Hartree-fock study
of the moiré Hubbard model for twisted bilayer transition metal
dichalcogenides, Phys. Rev. B 104, 075150 (2021).

[54] J. González and T. Stauber, Marginal fermi liquid in twisted
bilayer graphene, Phys. Rev. Lett. 124, 186801 (2020).

[55] M. Xie and A. H. MacDonald, Nature of the correlated insulator
states in twisted bilayer graphene, Phys. Rev. Lett. 124, 097601
(2020).

[56] P. Lucignano, D. Alfé, V. Cataudella, D. Ninno, and G. Cantele,
Crucial role of atomic corrugation on the flat bands and energy
gaps of twisted bilayer graphene at the magic angle θ ≈ 1.08◦,
Phys. Rev. B 99, 195419 (2019).

[57] N. N. T. Nam and M. Koshino, Lattice relaxation and energy
band modulation in twisted bilayer graphene, Phys. Rev. B 96,
075311 (2017).

[58] F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H. MacDonald,
Topological insulators in twisted transition metal dichalco-
genide homobilayers, Phys. Rev. Lett. 122, 086402 (2019).

[59] J. Jung, A. Raoux, Z. Qiao, and A. H. MacDonald, Ab initio
theory of moiré superlattice bands in layered two-dimensional
materials, Phys. Rev. B 89, 205414 (2014).

[60] W.-T. Hsu, J. Quan, C.-R. Pan, P.-J. Chen, M.-Y. Chou, W.-H.
Chang, A. H. MacDonald, X. Li, J.-F. Lin, and C.-K. Shih,
Quantitative determination of interlayer electronic coupling at
various critical points in bilayer MoS2, Phys. Rev. B 106,
125302 (2022).

[61] “quasi” in the sense that an arbitrary twist angle will in general
not yield a moiré supercell commensurate with the periodicity
of the honeycomb lattice.

[62] G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid
metals, Phys. Rev. B 47, 558 (1993).

[63] G. Kresse and J. Hafner, Ab initio molecular-dynamics simula-
tion of the liquid-metal-amorphous-semiconductor transition in
germanium, Phys. Rev. B 49, 14251 (1994).

155415-14

https://doi.org/10.1103/PhysRevB.103.024506
https://doi.org/10.1126/science.abg0399
https://doi.org/10.1038/s41586-021-03192-0
https://doi.org/10.1038/s41567-020-0906-9
https://doi.org/10.1021/acs.nanolett.1c04400
https://doi.org/10.1103/PhysRevB.98.235158
https://doi.org/10.1103/PhysRevB.98.075109
https://doi.org/10.1103/PhysRevB.98.245103
https://doi.org/10.1088/2399-6528/ab0fa9
https://doi.org/10.1103/PhysRevB.102.035161
https://doi.org/10.1021/acs.nanolett.1c00696
https://doi.org/10.1016/j.scib.2019.01.026
https://doi.org/10.1103/PhysRevLett.122.246401
https://doi.org/10.1103/PhysRevLett.122.246402
https://doi.org/10.1103/PhysRevLett.124.187601
https://doi.org/10.1103/PhysRevLett.128.065901
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevB.99.035111
https://doi.org/10.1103/PhysRevB.99.195120
https://doi.org/10.1103/PhysRevLett.122.257002
https://doi.org/10.1103/PhysRevLett.121.257001
https://doi.org/10.1038/s41578-020-0214-0
https://doi.org/10.1103/PhysRevB.100.075416
https://doi.org/10.1103/PhysRevB.100.155426
https://doi.org/10.1103/PhysRevB.106.075420
https://doi.org/10.1103/PhysRevB.106.L201403
https://doi.org/10.1038/s41563-021-00960-1
https://doi.org/10.1103/PhysRevB.104.075150
https://doi.org/10.1103/PhysRevLett.124.186801
https://doi.org/10.1103/PhysRevLett.124.097601
https://doi.org/10.1103/PhysRevB.99.195419
https://doi.org/10.1103/PhysRevB.96.075311
https://doi.org/10.1103/PhysRevLett.122.086402
https://doi.org/10.1103/PhysRevB.89.205414
https://doi.org/10.1103/PhysRevB.106.125302
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevB.49.14251


COUPLED PHONONS IN TWISTED BILAYER GRAPHENE PHYSICAL REVIEW B 108, 155415 (2023)

[64] M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, and F.
Bechstedt, Linear optical properties in the projector-augmented
wave methodology, Phys. Rev. B 73, 045112 (2006).

[65] J. S. Alden, A. W. Tsen, P. Y. Huang, R. Hovden, L. Brown,
J. Park, D. A. Muller, and P. L. McEuen, Strain solitons and
topological defects in bilayer graphene, Proc. Natl. Acad. Sci.
USA 110, 11256 (2013).

[66] C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J. C.
Lu, H. M. Guo, X. Lin, G. L. Yu, Y. Cao, R. Gorbachev
et al., Commensurate-incommensurate transition in graphene
on hexagonal boron nitride, Nat. Phys. 10, 451 (2014).

[67] K. Zhang and E. B. Tadmor, Structural and electron diffraction
scaling of twisted graphene bilayers, J. Mech. Phys. Solids 112,
225 (2018).

[68] T. Fabian, M. Kausel, L. Linhart, J. Burgdörfer, and F. Libisch,
Half-integer Wannier diagram and Brown-Zak fermions of
graphene on hexagonal boron nitride, Phys. Rev. B 106, 165412
(2022).

[69] S. Carr, D. Massatt, S. B. Torrisi, P. Cazeaux, M. Luskin, and
E. Kaxiras, Relaxation and domain formation in incommensu-
rate two-dimensional heterostructures, Phys. Rev. B 98, 224102
(2018).

[70] J. Jung, E. Laksono, A. M. DaSilva, A. H. MacDonald, M.
Mucha-Kruczyński, and S. Adam, Moiré band model and band
gaps of graphene on hexagonal boron nitride, Phys. Rev. B 96,
085442 (2017).

[71] R. He, T.-F. Chung, C. Delaney, C. Keiser, L. A. Jauregui, P. M.
Shand, C. C. Chancey, Y. Wang, J. Bao, and Y. P. Chen, Obser-
vation of low energy raman modes in twisted bilayer graphene,
Nano Lett. 13, 3594 (2013).

[72] J.-W. Jiang, B.-S. Wang, and T. Rabczuk, Acoustic and breath-
ing phonon modes in bilayer graphene with moiré patterns,
Appl. Phys. Lett. 101, 023113 (2012).

[73] J. Jung, A. M. DaSilva, A. H. MacDonald, and S. Adam, Origin
of band gaps in graphene on hexagonal boron nitride, Nat.
Commun. 6, 6308 (2015).

155415-15

https://doi.org/10.1103/PhysRevB.73.045112
https://doi.org/10.1073/pnas.1309394110
https://doi.org/10.1038/nphys2954
https://doi.org/10.1016/j.jmps.2017.12.005
https://doi.org/10.1103/PhysRevB.106.165412
https://doi.org/10.1103/PhysRevB.98.224102
https://doi.org/10.1103/PhysRevB.96.085442
https://doi.org/10.1021/nl4013387
https://doi.org/10.1063/1.4735246
https://doi.org/10.1038/ncomms7308

