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High-harmonic generation in graphene: Interband response and the harmonic cutoff
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We numerically examine the high-harmonic generation in graphene caused by an intense few-cycle terahertz
laser field by solving the time-dependent Dirac equation. The observed spectra feature a complex interplay of
interband and intraband electron dynamics. At high harmonic frequencies, we observe a plateau region with
a cut-off frequency linearly proportional to the laser field. The linear dependence of the cutoff on the field
resembles the behavior for electrons driven in bulk crystals but differs from the case of atoms or molecules. The
unique features of the graphene band structure allow for a transparent decomposition of interband and intraband
contributions and for an analytic estimate of the harmonic cut-off frequency in excellent agreement with the
simulations.
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I. INTRODUCTION

High-harmonic generation (HHG) in media interacting with
strong laser pulses is an important aspect of nonlinear optics
first discovered in gases [1,2]. In strong femtosecond laser
fields an electron is liberated from an atom or molecule
via above-threshold ionization (ATI) and recombines with
the ionic core as the field reverses, emitting high-frequency
photons [3]. The periodic sequence of driven emission and
coherent radiative recombination in the laser field creates a
train of bursts of HHG radiation with attosecond duration.
The harmonic spectra of such a pulse train reveals a sharp
cutoff [1,2], which scales linearly with the laser intensity I or
quadratically with the laser field amplitude F0, I ≈ F 2

0 .
The situation qualitatively changes in bulk semiconductors

or dielectrics: recent studies of solid crystals (in ZnO [4], GaSe
[5], and SiO2 [6]) subject to intense laser pulses revealed high-
harmonic generation with a cut-off energy scaling linearly
with the laser field ∼F0, i.e., with the square root of the laser
intensity. Pronounced differences in the behavior of gases and
solids sparked lively debates as to their origin [5–10].

Within a single-band model [4,6,11] the appearance of
HHG in semiconductors was attributed to the nonlinear
intraband response, in particular to Bragg reflections of
the driven electrons at the Brillouin zone boundary, giving
rise to so-called Bloch oscillations. Within this model the
cut-off energy Uc = h̄ωc of the broadband HHG spectra is
predicted to be proportional to the Bloch oscillation frequency
ωc ∼ �B = |e|aF0/h̄, where a is the lattice constant, for
electrons reaching the zone boundary. The same scaling
behavior of Uc was derived within a two-band model in the
strong field limit [12]. In this case, the high frequencies are
generated due to the transitions between Wannier-Stark states
separated by multiples of h̄�B , and not by the intraband
response. However, this model fails to predict the harmonic
generation of odd multiples of the driving field frequency ω in
the spectra observed in various experiments. More involved
approaches to HHG in solids considering multiple bands
[7–10] anticipate that the HHG is governed not only by
the anharmonic electron motion within one conduction band
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but by a complex interplay between the intraband and the
interband responses. In particular, the interband polarization
is predicted to dominate the high-energy part of the spectrum
and the harmonic cutoff [8,9]. On the other hand, modeling
the experimental high-harmonic spectrum in SiO2 suggested
the pivotal role of intraband dynamics [6]. The sensitive
dependence of the intraband harmonic yield on the curvature
of the band structure was proposed as a key ingredient for an
all-optical probe of the band structure [13,14].

The number of proposed competing models underlines that
the exact role of interband and intraband contributions for
the solid state is still a widely open question. One source
of ambiguity is the complicated band structures of the bulk
materials considered so far. In the present work we therefore
consider the conceptually much simpler system of a truly
two-dimensional solid, graphene. This semimetal features
a gapless spectrum, in contrast to the wide-band-gap bulk
semiconductors previously studied experimentally [4,6,11]
and theoretically so far [7–10,12–14]. The energy dispersion
of electrons in graphene near the Fermi energy can be well
approximated by a double Dirac cone. Bragg reflections at the
Brillouin zone boundary are absent for low-energy excitations.
In order to spectrally confine the emitted radiation to the
region of a conelike band structure, we consider a few-cycle
terahertz driving field with mean carrier energy (frequency)
h̄ω = 8 meV (≈2 THz). Harmonics up to the order n of about
100 still lie within the spectral region of the Dirac double
cone. The present investigation is motivated not only by the
goal to explore the nonlinear response of this two-dimensional
solid currently investigated experimentally [15–20], but also to
provide additional insights into the high-harmonic generation
in condensed matter for an electronic structure fundamentally
different from that of bulk semiconductors or dielectrics.

The source of a strong nonlinear response of electrons and
holes in graphene is related to the near-linear energy dispersion
close to the Dirac point [21,22]. Indeed, field-induced Zener-
type electron transfer yields a strongly nonadiabatic behavior
[23,24]. Here, we specifically investigate the HHG from
graphene subjected to a short terahertz laser pulse, including
effects of deviation from the perfect cone (“trigonal warping”)
and dephasing of interband coherence. Our calculations reveal
HHG spectra with a broad harmonic plateau and a sharp energy
cutoff. For the value of the cut-off energy determined by

2469-9950/2017/95(8)/085436(9) 085436-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.085436
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FIG. 1. (a) Calculated current (black curve) produced by elec-
trons in graphene driven by a near-single-cycle 2-THz Gaussian
envelope laser pulse of 40 kV/cm electric field strength (the black
dashed curve shows its normalized vector potential). (b) Fourier
transform of the vector potential in (a), (solid line) and after filtering
out low-frequency components by a high-pass (HP) filter (dashed
line).

interband polarization an analytical estimate can be given in
good agreement with numerical simulations, scaling linearly
with the field strength of the driving terahertz field.

The present paper is organized as follows: In Sec. II
we briefly review the methods employed for analyzing the
nonlinear response of graphene. Simulation results for ideal
graphene as well as for the influence of dephasing and doping
are presented in Sec. III, followed by concluding remarks in
Sec. IV.

II. METHODS

We theoretically examine the response of graphene to short
terahertz (THz) laser pulses, described by a vector potential
�A(t), by solving the time-dependent Dirac equation (TDDE)

ih̄
∂

∂t
|ψ(t)〉 = vF ( �p + |e| �A(t)) · �̂σ |ψ(t)〉, (1)

where vF = 106 m/s is the Fermi velocity, �̂σ = (σ̂x,σ̂y) are the
Pauli matrices, and �F (t) = − d

dt
�A(t) is the electric field of the

pulse with peak field strength �F0. We treat the electromagnetic
field in the velocity gauge, which eliminates the electric field
from the Hamiltonian. While this gauge avoids numerical
difficulties associated with the large r behavior of the electron-
pulse interaction (≈ �r · �F ) in real space, it may face divergence
problems in the (near) static limit (ω → 0) [24,25], as this limit
corresponds to an ever-increasing vector potential �A(t). In the
present case, however, the near-zero frequency contributions of
the driving field �A(ω ≈ 0) to high-harmonic generation can be
safely neglected. The influence of such a spurious contribution
can be directly controlled by applying a high-pass (HP)
filter to the Fourier amplitude F̃ (ω) of the original few-cycle
driving pulse F (t), thereby assuring vanishing low-frequency
contributions in F̃HP(ω) in the vicinity of ω = 0. Solving
Eq. (1) with the corresponding vector potential AHP(t) [see
dashed line in Fig. 1(b)] yields an essentially unchanged
harmonic spectrum compared to the original pulse, verifying
that the HHG remains unaffected by spurious low-frequency
contributions.

We determine the one-particle density matrix ρ(t) by
propagating its eigenstates, the natural orbitals, according to

Eq. (1),

ρ(t) =
∑

j

Pj |ψj (t)〉〈ψj (t)|, (2)

where Pj are the occupation numbers prior to the arrival of the
pulse (t → −∞) described by a Fermi-Dirac distribution

Pj = fFD(Ej − μ,T ). (3)

We refer to the time-evolved natural orbitals |ψj (t)〉 as
quantum trajectories. At t → −∞ the initial states with
well-defined momentum �p and energy Eξ = ξvF | �p| are the
solutions of the stationary Dirac equation:

ψ
ξ

�p = 1√
2

(
e−iθ �p/2

ξeiθ �p/2

)
. (4)

Here ξ = ±1 is the (conduction/valence) band index and θ �p
is the directional angle of the electron momentum, i.e., θ �p =
arctan(py/px). Driven by the electric field of the laser such a
quantum trajectory moves along the Dirac cone. Restricting
the motion to a single band, the state would change its
energy as

Eξ (t) = ξvF | �p + |e| �A(t)|. (5)

Within the two-band model of the Dirac double cone, a state
can be partially transferred to the upper cone by Landau-
Zener–type interband tunneling [26] if the initial momentum
component orthogonal to the laser polarization direction,
assuming linear polarization of the laser, is nonzero. For
vanishing transverse momentum, the trajectory passes through
the Dirac point and can undergo complete population inversion
[21,23,27]. The tunneling mechanism induces an interband
polarization by splitting the quantum trajectory into two paths
coherently propagating on the upper and the lower cones. This
interband polarization is expected to crucially influence the
high-harmonic spectrum. The single-particle current density
�j ξ

�p associated with a given quantum trajectory with initial
momentum �p started from a band with index ξ can be evaluated
as

�j ξ

�p (t) = 〈
ψ

ξ

�p(t)
∣∣ �̂j ∣∣ψξ

�p(t)
〉 = vF

〈
ψ

ξ

�p(t)
∣∣(σ̂x,σ̂y)

∣∣ψξ

�p(t)
〉
, (6)

where �̂j denotes the current operator, which in the case of
Dirac particles is proportional to Pauli matrices σ̂x,y .

Following Ref. [21], the Dirac equation for a quantum
trajectory [Eq. (1)] can be conveniently rewritten in terms
of optical Bloch-type equations, which allows for a straight-
forward generalization in the presence of scattering and
dephasing as discussed below. Accordingly, we expand the
time-dependent wave function on the double cone as

ψ(t) =
∑
ξ=±1

Cξ (t)ψξ (t), (7)

where the wave function within each band ψξ (t) changes
according to

ψξ (t) = 1√
2

(
e−iθ �
(t)/2

ξeiθ �
(t)/2

)
exp ( − iφξ (t)), (8)
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with the temporal phase

φξ (t) = 1

h̄

∫ t

0
Eξ (t ′)dt ′ = ξ

vF

h̄

∫ t

0
| �p + |e| �A(t ′)|dt ′. (9)

Here Eξ (t ′) describes time-dependent energy of the particle
driven by an external field [Eq. (5)]. During the time propaga-
tion the directional angle changes as

θ �
(t) = arctan

(
py + |e|Ay(t)

px + |e|Ax(t)

)
, (10)

where �
 = �p + |e| �A(t) is the kinematic momentum. Substi-
tuting the wave-function expansion Eq. (7) into the TDDE
[Eq. (1)] results in a system of differential equations for the
expansion coefficients Cξ (t), which can be rewritten in the
form of optical Bloch equations

ζ̇ (t) = − i

2
θ̇ �
(t)[ηc(t) − ηv(t)]e2iφ(t),

η̇c(t) = − i

2
θ̇ �
(t)ζ (t)e−2iφ(t) + c.c.,

η̇v(t) = i

2
θ̇ �
(t)ζ (t)e−2iφ(t) + c.c., (11)

after introducing conduction (ηc = |C+|2) and valence (ηv =
|C−|2) band occupation probabilities and the interband coher-
ence ζ = C+C∗

−. The single-electron current density can now
be expressed as [21]

j �p,x(t) = vF [(ηc − ηv) cos(θ �
)

+ i(ζe−2iφ − ζ ∗e2iφ) sin(θ �
)], (12a)

j �p,y(t) = vF [(ηc − ηv) sin(θ �
)

− i(ζe−2iφ − ζ ∗e2iφ) cos(θ �
)]. (12b)

The current generated by a particle moving within one band
with band index ξ , i.e., the intraband current, is

j
ξ

�p,x
(t) = ξvF cos(θ �
),

j
ξ

�p,y
(t) = ξvF sin(θ �
). (13)

Comparison between Eqs. (12) and (13) shows that the current
density [Eqs. (12)] contains both an intraband contribution
[first terms in Eqs. (12a) and (12b)] and an interband
polarization contribution [second terms in Eqs. (12a) and
(12b)].

The total current determining the response of graphene to a
THz pulse is given by the ensemble average of single-electron
currents �j ξ

�p (t) [Eq. (6) or Eq. (12)] generated by the time
evolution of initially occupied states:

〈 �J 〉 = 4

(2πh̄)2

∑
ξ

∫
d2p · �j ξ

�p (t) · fFD(ξvF | �p| − μ,T ). (14)

Here, the factor of 4 results from the spin and the valley
degeneracies. Note that the integral in Eq. (14) extends over
all Bloch states with initial momenta weighted by their initial
occupation given by fFD.

As we verified numerically, the effect of finite temperature
(up to room temperature) and finite doping (μ �= 0, where the
energy of the Dirac point is set to zero) on the high-harmonic

spectrum is weak as long as the respective energy scales are
small compared to the ponderomotive energy [3,28]. The latter
is defined as the average quiver energy of the oscillating
electron in the laser field, Up = F 2

0 /(4mω2). We therefore
average over electrons initially occupying at t → −∞ the
valence band (μ = 0) with initial energies Emin � E � 0 eV
at T = 0. Emin is the minimum energy of a state in the valence
band that can be driven up to the Dirac point by the strong
THz pulse. Since lower-lying initial states do not reach the
Dirac point during the time evolution of the pulse they will
not significantly contribute to the high-harmonic part of the
spectra. We have numerically verified that HHG does not
depend on the precise numerical value of Emin. An example
of the calculated electron response of graphene, i.e., 〈 �J 〉, to
a 2-THz pulse with a Gaussian envelope of pulse duration
tp = 250 fs and field strength of 40 kV/cm is displayed
in Fig. 1. Using the field AHP(t) following from inverse
Fourier transform of the high-pass filtered signal instead of the
unfiltered A(t) yields the same 〈 �J 〉 within graphical accuracy.

Alternatively to the Dirac equation continuum model
Eq. (1), the nonlinear response can also be calculated within
the framework of a tight-binding approach by solving the time-
dependent Schrödinger equation for a tight-binding (TDTB)
Hamiltonian applied to finite-sized flakes [27]. The total
current determining the response

〈 �J 〉 = 2
∑

n

�jn(t) · fFD(εn) (15)

is calculated as an ensemble average over single-electron
currents �jn determined by the time evolution of occupied
eigenstates |ψn〉 (with eigenenergies εn) of a rectangular
graphene flake with periodic boundary conditions along the
laser pulse, i.e., along the x direction. We screen the zigzag
edges parallel to the x axis by applying a Berry-Mondragon
potential to suppress strong edge localization effects [29].
Unlike the TDDE, this approach accounts for the hexagonal
lattice structure from the outset. However, it contains finite-size
effects of the flake. A numerical comparison between the two
methods is presented below.

The far-field response generated by the induced currents in
graphene under the influence of the laser field is given by the
dipole acceleration. The spectral power of the far field can be
evaluated from the Fourier transform of the dipole acceleration
or, equivalently, from the Fourier transform of the total
current as

P (ω) ∼ | �̈d(ω)|2 ∼ |ω �J (ω)|2. (16)

We evaluate Eq. (16) for graphene driven by few-cycle THz
pulses with a well-defined carrier-envelope phase (CEP). In
the following we always show the spectral power normalized
to the intensity of the first harmonic, the fundamental of the
driving field.

III. SIMULATIONS

A. Ideal graphene

We consider in the following the response of graphene to
a linearly polarized THz pulse along the x axis given by the
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vector potential

A(t) = A0 sin(ωt + φCEP )e
− t2

2t2p (17)

with amplitude A0, a Gaussian envelope with pulse duration
tp = 250 fs, and CEP phase φCEP. Such a sinelike vector
potential corresponds to an approximatively cosinelike shape
of the electric field of the pulse. We choose the pulse
frequency ω = 2πν with ν = 2 THz and a peak field amplitude
corresponding to F0 = ωA0 = 40 kV/cm. Since the ideal
double Dirac cone is rotationally invariant, the direction of
the polarization axis is irrelevant. This, however, will change
when trigonal warping, i.e., the deformation of the cone due
to the underlining hexagonal lattice structure, is taken into
account as discussed below.

In this section we evaluate the response of graphene by
explicitly solving the time-dependent Dirac equation [Eq. (1)]
with initial conditions given by Eq. (4) and by summing over
the occupied stated in the �k space [Eq. (14)]. We can then
directly calculate the current density using Eq. (6). A typical
current response to a near single-cycle pulse with φCEP = 0
results in a high-harmonic spectrum [see Figs. 2(a)–2(c)]
consisting of three main regions: (i) a dominant part of
low-frequency harmonics exponentially decaying as a function
of E; (ii) an extended plateau region; and (iii) a sharp cutoff
at high frequencies. Qualitatively similar spectra were first
observed for laser-irradiated gases [1,2]. The generation of
high-frequency photons in gases can be intuitively explained
by a three-step model: the electron liberated from the atom
by tunneling ionization gets accelerated by the laser field and
eventually returns to the ionic core, where it radiatively recom-
bines, emitting a high-frequency photon. Correspondingly, the
atomic cut-off energy Ua

c is given by the maximum kinetic
energy gain after which an electron can still return back to its
core and is classically estimated as [3]

Ua
c = Ip + 3.17Up = Ip + 3.17e2F 2

0 /4mω2, (18)

where Ip is the ionization potential of the atom and Up =
F 2

0 /(4mω2) the ponderomotive energy [3,28]. Equation (18)
scales with the square of the peak field strength ∼F 2

0 or, more
precisely, of the vector potential ∼A2

0 ≈ (F0/ω)2.
A corresponding simple picture for harmonic generation by

the electronic motion in the periodic crystal potential is still a
matter of debate. The present case of graphene may provide
important insight along those lines. The natural starting point
for condensed-matter harmonics is the (quasi-) momentum
rather than a real-space picture (Fig. 3). In order to explore the
origin of the harmonics, we first perform a windowed Fourier
transform (WFT) [30] of the current. In Figs. 2(a)–2(c) (bottom
panels) we observe two major bursts of harmonic radiation.
The first one, when the vector potential reaches its first
maximum Amax, includes radiation up to energies ∼0.5 U

g
c ,

while the second burst emitted near the following extremum
Amin reaches all the way up to the cut-off energy for graphene,
U

g
c . For the remaining laser pulse the spectrum remains

confined to energies below �0.5 U
g
c . The appearance of high

harmonics within a narrow time window and their energy
cutoff can be understood as follows. Consider an electron
with initial electron momentum p0

x ≈ −|e|A0 (py 
 px) and
energy E0 ≈ −vF |e|A0 [Fig. 3(a) at t0]. |E0| coincides with the

FIG. 2. (a)–(c) Integrated (top frame) and time-resolved (bottom
frame) spectral power P (E) of the far-field response of the graphene
to a 2-THz, one-cycle Gaussian laser pulse with zero carrier-envelope
phase and duration tp = 250 fs. We normalize the spectral power to
the intensity of the first harmonic. The peak amplitudes of the laser
field are (a) F0 = 20 kV/cm, (b) F0 = 30 kV/cm, and (c) F0 =
40 kV/cm. We use the linear dispersion relation E(t) = vF |e|A(t) of
Dirac fermions with vF = 106 m/s (shown as black curve in bottom
frame starting with E(0) at the minimum energy |Emin| = vF |e|A0).
Solid vertical lines show the theoretically estimated harmonic cutoff
Ug

c . Dashed vertical lines correspond to 0.5 Ug
c . (d) Theoretically

estimated (red line, v0
F = 0.78 × 106 m/s) and computed (black dots)

harmonic cutoffs as a function of the laser field strength.

maximum energy a Dirac electron can pick up from the laser
field. At the maximum of the vector potential this electron
is brought close to the Dirac point px = px0 + |e|A0 ≈ 0
[Fig. 3(a) at t1]. E0 therefore coincides with Emin, the lowest
energy of a state on the valence cone that can be driven up
to the Dirac point by the pulse. Near the Dirac point the
quantum trajectory splits into two components, one of which
is excited to the conduction band by interband Landau-Zener
tunneling [26], while the other remains in the valence band
[see Fig. 3(c)]. The resulting superposition of the two wave
packets results in high-frequency oscillations of the single-
electron current jx(t). The oscillation frequency is determined
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FIG. 3. (a) Schematic illustration of high-energy harmonic gen-
eration in graphene and of the harmonic cutoff. The depicted initial
state contributes to the harmonic emission near the cutoff. At
t0 → −∞ the state has momentum px ≈ −|e|A0 (py 
 px) and
energy E0 ≈ −vF |e|A0. At the maximum of the vector potential (at
time t1) the momentum of the electron is close to px ≈ 0 and its energy
reaches the Dirac point (with py = const), allowing for Landau-Zener
tunneling between the two bands. The maximal energy distance
between the two pieces of the split wave packet is reached at the
following minimum of the vector potential (at time t2) determining the
cut-off energy of the harmonic radiation emitted upon electron-hole
recombination. (b) Single-electron current (black curve) generated
by a quantum trajectory ψ(t) for an initial state (at t → −∞) with
momentum �p = (px,py) = (−0.8,0.05)|e|A0 and an energy close to
Emin evaluated by solving the TDDE [Eqs. (1) and (6)]. The intraband
current (for a state moving within only one band) evaluated using
Eq. (13) and multiplied by –1 for better visibility is shown in red.
Black-dashed curve represents the vector potential of the pulse. (c)
Windowed Fourier transform of the quantum trajectory ψ(t) depicted
in (a). Black and red dashed curves follow the energy evolution of a
state within a single (valence/conduction) band, i.e., Eξ (t) [Eq. (5)].

by the derivative of the temporal phase difference between
the two wave packets, �(t) = �φ̇(t) = (E+(t) − E−(t))/h̄ =
2E+(t)/h̄ [21]. For this particular quantum trajectory, the
maximal possible phase velocity and, therefore, energy dif-
ference between the two (conduction and valence band) paths
is achieved at the subsequent extremum of the vector potential
[at t2, with A(t2) = −A0, see Fig. 3(a)], determining the energy
cutoff:

Ug
c = 2vF |e|(Amax − Amin)

≈ 4vF |e|A0 = 4vF |e|F0/ω. (19)

This cutoff is proportional to A0 and depends not only on
the field strength, but also on the inverse driving frequency
similar to Ua

c [Eq. (18)]. This is qualitatively different from the
radiation associated with Bloch oscillations. Our theoretical

estimate of U
g
c [see solid black lines in Figs. 2(a)–2(c)

and red line in Fig. 2(d)] agrees well with our simulations
[see black dots in Fig. 2(d)]. The small deviation between
theoretical estimate and calculations can be explained by
tunneling of electrons with energies slightly below Emin. The
probability of such events, however, decays exponentially with
increasing |E|.

To illustrate a typical quantum trajectory contributing to the
spectrum near the harmonic cutoff, we solve the TDDE for an
initial state with �p = (−0.8,0.05)eA0 and E = −0.8vF |e|A0.
The windowed Fourier transform of ψ(t) traces the energy
evolution E(t) of the state [Fig. 3(c)]. Upon reaching the Dirac
point at t ≈ t1, the initial wave packet splits into two. These
two pieces of the wave packet gain the largest phase difference
at the minimum of the vector potential, t ≈ t2. Moreover, the
single-electron current [black curve in Fig. 3(b)], evaluated
by Eq. (6), reveals rapid oscillations. These oscillations are
present only after the split of the trajectory due to tunneling
near the Dirac point, i.e., at times t � t1 [see Fig. 3(c)].
There is an obvious correlation between the frequency of
these oscillations and the energy difference between the two
pieces of the wave packet propagating in the valence and
conduction bands. The highest frequency is found when the
phase difference between the two wave packets [or the energy
difference between the two trajectories Eξ (t)] is maximal.
The intraband current [red curve in Fig. 3(b)] calculated
for an electron moving only within the valence band using
Eq. (13) does not show such oscillations. It coincides with the
total current [black curve in Fig. 3(b)] only at the beginning
of the pulse, i.e., t � t1, when the electron moves only
within the valence band. One noteworthy point of conceptual
interest is that Bragg reflections are entirely absent from
the dynamics on the Dirac double cone. Therefore, Bloch
oscillations do not significantly contribute to the harmonic
generation in graphene. The (mostly) low-order intraband
harmonic contribution probes the curvature of the valence band
near the Dirac point (for py 
 px).

In the time-resolved Fourier spectrum we observe a second
lower cutoff effective after the pulse has concluded [marked by
dashed vertical lines in Figs. 2(a)–2(c)]. This cutoff originates
from the residual interband polarization. The maximum
oscillation frequency in the single-electron current in this
regime is governed by the same trajectories (in energy space)
also responsible for the main cutoff [Figs. 3(b) and 3(c)]. After
the pulse is over, the wave packet in the lower band returns
to its initial state with energies near −|Emin| = −vF |e|A0 and
the wave packet in the upper band correspondingly returns to
a state with |Emin|. The frequency of the oscillations of the
current produced by the superposition of these two states is
� = (E+ − E−)/h̄ = 2|Emin|/h̄, which results in a cutoff at
0.5 U

g
c .

We turn now to the many-electron response of a graphene
sheet with μ = 0, i.e., a completely occupied valence cone at
T = 0 [Eq. (14)]. All electrons in the valence band occupying
states with energies in the interval Emin � E � 0 can reach
the upper cone via Zener tunneling contributing to both
intraband and interband polarization radiation. Indeed, valence
electrons above Emin account for the dominant fraction of
the total harmonic spectrum (see red trace in Fig. 4), and
at high energies (up to the cut-off energy) their contribution
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FIG. 4. High-harmonic generation in graphene. The total nonlin-
ear response of graphene is shown in black; red trace corresponds
to the response of electrons near the Dirac point with energies
1.1Emin < E < 0 contributing to the high-harmonic part of the
spectra. The response of electrons further away from the Dirac point
with E < 1.1Emin (green) contribute only to low-order harmonics.

coincides with the total response (see black trace in Fig. 4).
By contrast, electrons with energies below Emin have an
exponentially small tunneling probability between the two
cones and hence contribute only to the intraband current. The
integrated response of electrons with E � Emin (see green
trace in Fig. 4) yields predominantly low harmonics stemming
from the intraband current. Contributions to the plateau and the
cut-off region are absent. It should be noted that this component
of the intraband current does not probe the steep variations of
the cone near the Dirac point.

While the carrier-envelope phase of the laser pulse does
not influence the cut-off energy, it influences the shape of the
high-energy tail. In particular, a pulse with a CEP of π/2
causes a strongly fluctuating pattern near the cutoff [Fig. 5(a)]
as compared to the similar pulse with zero CEP [Fig. 2(b)].
Longer pulses, e.g., a ten-cycle pulse with a Gaussian envelope
and with zero CEP [Fig. 5(b)], leave the cutoff [Eq. (19)]

FIG. 5. High-harmonic spectra of graphene subject (a) to a 2-THz
Gaussian laser pulse with duration tp = 250 fs and carrier-envelope
phase (CEP) of φCEP = π/2; (b) to a 2-THz Gaussian laser pulse
with duration tp = 1240 fs (CEP = 0); in each case for a peak field
strength of F0 = 30 kV/cm.

FIG. 6. Comparison between (a) the TDDE and (b) the TDTB for
the same Gaussian 2-THz laser pulse (φCEP = 0, tp = 250 fs) with
F0 = 30 kV/cm calculated for identical Fermi velocity v0

F = 0.78 ×
106 m/s determined by our tight-binding parametrization. [Note the
shift of the cutoff compared to that presented in Fig. 2(b).]

unchanged but result in a strongly fluctuating high-harmonic
tail similar to that of a short pulse with CEP of π/2. In
both cases this behavior near the cutoff can be attributed to
intercycle interferences, i.e., the generation of high-energy
trajectories within the different laser cycles. Since for a
short laser pulse with zero CEP the high-energy trajectories
contributing to the high-energy part of the spectra are generated
only within one laser cycle, the high-energy tail of the spectra
is smooth.

The harmonic cutoff U
g
c should depend linearly on the

Fermi velocity vF [Eq. (19)]. Our numerical results confirm
this behavior: we evaluate the response of graphene by solving
the TDDE and the TDTB for a different Fermi velocity of
vF = 0.78 · 106 m/s [see Figs. 6(a) and 6(b)]. The HHG
spectrum clearly displays the expected shift of the harmonic
cutoff to the lower energy, in agreement with Eq. (19).
[Compare to Fig. 2(b), where we evaluated the response within
the TDDE approximation with vF = 106 m/s.] The Fermi
velocity chosen is given by the band structure resulting from
our tight-binding parametrization [31]. Overall, the TDDE and
TDTB results agree quite well [compare harmonic spectra
in Figs. 6(a) and 6(b)]. Minor differences are due to finite-
size effects and differences in the underlying band structure
discussed in the following. The dependence of the cutoff on
the Fermi velocity may provide a route towards determining
vF complementing standard angular resolved photoemission
spectroscopy (ARPES) techniques. Since the dispersion rela-
tion is probed in a well-defined energy window determined
by the pulse strength, Fermi velocity renormalizations close to
the Dirac point [32] can be probed.

B. Effect of trigonal warping

The Dirac equation for massless fermions approximates the
graphene band structure near the K and K ′ points only in the
low-energy limit (up to |E| ≈ 0.2 eV). At higher energies
the rotationally symmetric double-cone band structure does
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FIG. 7. Cross sections through an ideal Dirac cone (black) and a
deformed Dirac cone with trigonal warping (red) taken at different
energies: E = 0.2, 0.3, and 0.45 eV.

not account for the trigonal deformation of the circular cross
section of the cones called trigonal warping. The TDTB
method, including third-order tight-binding couplings, quan-
titatively accounts for this effect. Trigonal warping becomes
important for pulses we consider here. For example, for a field
strength of the pulse of 40 kV/cm, the critical energy, which
Dirac fermions can gain from the laser field, is Emin = 0.31
eV. At these energies the trigonal warping effect can no longer
be neglected (Fig. 7). Within the Dirac double-cone model
trigonal warping can be included by a correction term to the
Dirac Hamiltonian [33]:

H war(p) = −μ
[(

p2
x − p2

y

) · σ̂x − 2pxpyσ̂y

]
, (20)

where μ ≈ 5 eV Å2 is the trigonal warping coefficient. Analo-
gously to the TDDE for the ideal Dirac cone, we calculate the
time evolution of the single-electron wave function ψ(t) for
an initial state (at t → −∞) with a well-defined momentum
�p. We start from the solution of the stationary Dirac equation
with an additional warping potential H w(p),

ψξ ( �p) = 1√
2

(
ξ · ei arg[vF e

−iθ �p −μpe
2iθ �p ]

1

)
, (21)

and modified energy dispersion

Ew
ξ = ξp

√
v2

F + μ2p2 − 2vF μp cos(3θ �p), (22)

where p is the absolute value of momentum.
The far-field response of graphene to a 2-THz pulse with

Gaussian envelope (tp = 250 fs) in the case of the warped
Dirac cone becomes slightly modified (Fig. 8). In particular,
for a pulse linearly polarized in x direction, the cutoff shifts to
higher energies. This shift depends on the amount of trigonal
warping, as it modifies the band structure and, therefore, the
group velocity. Depending on the polarization direction of
the pulse, the group velocity vg = ∂E/∂kx changes during the
wave-packet propagation compared to the Fermi velocity of
the unperturbed Dirac cone. For polarization in x direction
and for initial states with px < 0 the group velocity increases
(vg > vF ). Therefore these states can gain more energy from
the same pulse, resulting in a higher cut-off energy. The overall
intensity of the HHG spectra, however, remains similar to the
unperturbed case.

FIG. 8. The spectral power P (E) of the far-field response of
graphene to a Gaussian 2-THz laser pulse with duration tp = 250 fs
and field strength of 40 kV/cm calculated by TDDE with (red curve)
and without (black curve) trigonal warping of the Dirac cone.

C. Effect of dephasing

The high-frequency contributions due to interband polar-
ization result from the coherence between the two trajectories
propagating within the conduction and valence bands. There-
fore, the harmonic spectrum, in particular near the cutoff U

g
c ,

is expected to be sensitive to dephasing and decoherence.
Electron-electron or electron-phonon scattering may lead to
a loss of coherence and hence to the decay of oscillations.
Typical decoherence times due to electron-phonon scattering
are estimated to be of the order of picoseconds [34,35]. For
high-energy excitations (∼1.2 eV) strongly inelastic electron-
electron scattering times are of an order of 50 fs; for lower
energies they are considerably larger [36]. We simulate the
decay of interband polarizations within the relaxation-time
approximation by introducing a dephasing time T2, giving rise
to a dephasing term proportional to 1/T2 in the optical Bloch
equation for ζ̇ [Eq. (11)] [8,9]:

ζ̇ (t) = − ζ

T2
− i

2
θ̇ �
(t)[ηc(t) − ηv(t)]e2iφ(t). (23)

Absence of dephasing corresponds to T2 = ∞, and a dephas-
ing time T2 = 500 fs is chosen to match the cycle period of
the pulse. Based on the time scales available in the literature
[34–36], we choose T2 = 80 fs as an estimate for a small

FIG. 9. An example of single-electron current �j (t) calculated
by optical Bloch equations with different dephasing times: Td = ∞
(black dashed curve), i.e., no dephasing; Td = 500 fs (red curve), i.e.,
Td is equal to the period of the pulse; and Td = 80 fs (green curve).
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FIG. 10. The spectral power P (E) of the far-field response of
graphene at T = 0 to a Gaussian 2-THz laser pulse with duration tp =
250 fs and peak field strength of 40 kV/cm calculated by optical Bloch
equations with different dephasing times: T2 = ∞ (black curve); T2 =
500 fs (red curve); and T2 = 80 fs (green curve).

dephasing time. As expected, the high-frequency components
are monotonically damped with decreasing T2 (Fig. 9). Only
the low-harmonic portion remains unaffected by T2.

The power spectrum P (E) of the total current 〈 �J (t)〉
(Fig. 10) for the ensemble of valence band electrons [Eq. (14)]
displays a reduction of the HHG spectrum with decreasing T2.
At the same time, the noisy fluctuations in P (E) are reduced in
favor of equispaced harmonics. Similar results have been found
in two-band model simulations for semiconductors [8,9]. This
is a direct consequence of the decay of interband coherence.
As a result the intraband response of incoherent charge motion
within either conduction or valence bands becomes more
important in the presence of decoherence in the system.

IV. CONCLUSION

High-harmonic generation in graphene is the result of an
interplay between intraband and interband contributions. The

simplicity of the band structure well approximated by the Dirac
double cone allows for a transparent decomposition of the
mechanisms underlying harmonic radiation. While the low
harmonic orders (i.e., the third- and fifth-order harmonics)
are predominantly caused by the intraband current near the
Dirac point, the high-energy portion close to the cutoff is
exclusively due to interband polarization. The cut-off energy
can be analytically determined from the interference of two
quantum paths propagating in the valence and conduction
bands prior to recombination. The interference term contains
oscillations in the current with frequencies determined by the
energy difference between the two paths. These oscillations
are very sensitive to the amount of dephasing in the system.
The highest frequency of the oscillations produces the energy
cutoff U

g
c , which is proportional to the vector potential of

the laser field or, more precisely, to the difference between
maxima and minima of the vector potential for short pulses.
Notably, our estimate of the cut-off energy U

g
c does not depend

on the carrier-envelope phase and is applicable to any shape of
the pulse. However, the details of the high-harmonic spectra
strongly vary for different pulses. Ug

c is found to scale linearly
with the Fermi velocity vF , which determines the slope of the
Dirac cone. The present results for graphene resemble some of
those found for bulk solids in multiband approximations [9,7]
and should therefore be useful for understanding the HHG
in bulk crystals, in particular the complex interplay between
interband and intraband dynamics.
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