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We present an approach for embedding defect structures modeled by density functional theory into large-scale
tight-binding simulations. We extract local tight-binding parameters for the vicinity of the defect site using
Wannier functions. In the transition region between the bulk lattice and the defect the tight-binding parameters
are continuously adjusted to approach the bulk limit far away from the defect. This embedding approach allows

for an accurate high-level treatment of the defect orbitals using as many as ten nearest neighbors while keeping a
small number of nearest neighbors in the bulk to render the overall computational cost reasonable. As an example
of our approach, we consider an extended graphene lattice decorated with Stone-Wales defects, flower defects,
double vacancies, or silicon substitutes. We predict distinct scattering patterns mirroring the defect symmetries

and magnitude that should be experimentally accessible.
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I. INTRODUCTION

The first experimental realization of graphene by Novoselov
et al. [1] in 2004 opened a new field of physics, the field of
two-dimensional (2D) materials. Graphene consists of a single
layer of carbon atoms arranged in a hexagonal honeycomb
lattice featuring spectacular properties, with the manifestation
of an anomalous quantum Hall effect at room temperature, ex-
tremely high electron mobility, and extraordinary mechanical
strength being among the most prominent ones [2—4]. Possible
new devices based on graphene cover a broad range from
spintronics [5], valleytronics [6], and highly accurate sensors
[7] to terahertz clocked field-effect transistors and stacked 2D
material photovoltaics [8,9].

While new chemical-vapor-deposition growing techniques
produce exceptionally clean flakes [10], any real device almost
inevitably features imperfections due to defects and the finite
size of the lattice. Changes in properties of graphene due to
imperfections are crucial for the assessment of the performance
and functionality of future devices, and therefore the under-
standing of such changes is key to engineering graphene-based
devices. At the same time, it may become possible to tailor
device properties by systematically placing defects. A variety
of defect structures in graphene have already been observed
and also theoretically predicted, including topological defects
such as Stone-Wales and flower defects [11-17].

Beyond graphene, other emerging two-dimensional ma-
terials such as hexagonal boron nitride and transition-metal
dichalcogenides as well as silicon-based new materials can be
strongly tuned by local defects [18,19]. Modeling large-scale
devices fabricated with such materials thus requires a flexible
yet robust approach for accurate modeling of local defects. Full
density-functional-theory (DFT)-based implementations such
as the TranSIESTA code [20,21] and Wannierization approaches
[22] for treating defects require us to treat the entire structure on
the same level of sophistication. For narrow graphene nanorib-
bons the influence of a single localized defect on transport in
graphene has been theoretically investigated for a variety of
defects (e.g., Stone-Wales [23], boron impurities [24]) using

2469-9950/2018/97(3)/035430(7)

035430-1

these Wannierization methods. However, for larger devices
with linear dimensions above 100 nm a full treatment of
the entire geometry on the DFT level is hardly feasible. An
approach to overcome this limitation consists of splitting a
large geometry into building blocks of structures treatable
by DFT [25]. This accurate approach has been successfully
applied to defects and edge effects [26-28] yet includes most
of the complexity of the Kohn-Sham Hamiltonian in the entire
scattering geometry. Consequently, large-scale calculations re-
main numerically prohibitively expensive. Alternatively, tight-
binding (TB) calculations of large graphene flakes provide
detailed insights into transport properties [29,30]. Closely
related density-functional-theory tight-binding (DFTB) [31]
methods rely on extensive Slater-Koster parametrizations to
describe the interactions between orbitals of neighboring
atoms. More complicated defects or different hybridizations
pose a considerable challenge for finding a suitably general
parametrization. The goal of the present work is to combine
the full DFT treatment of the defect with the TB treatment of
the extended pristine 2D material by introducing a systematic
algorithm for alocally varying parametrization. To achieve this
goal we embed a local DFT treatment of a supercell containing
around 50 atoms in the vicinity of the defect in a large-
scale tight-binding calculation for the defect-free parts of the
structure. In such a way, we are able to treat devices containing
several millions of atoms. For one application we model an
experiment where two scanning tunneling microscope (STM)
tips approach a free-hanging graphene sheet to measure the
conductance currently carried out by Eder et al. [32,33]. We
benchmark our embedding technique for a variety of defects
and discuss possible caveats and extensions.

II. EMBEDDING TECHNIQUE

We consider a tight-binding Hamiltonian of the form
H =ZGiC,TCi +ZVi,jCjCja ey
i (i.j)
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FIG. 1. (a) Band structures of bulk graphene around the K point. The band structures calculated with DFT (solid green line), with Sgl (dashed
red line), with SSV (dashed blue line), and with S¥ (dashed black line) are shown. (b) and (c) The band structure of a supercell consisting of 50
atoms with a Stone-Wales defect. Band structures shown are calculated from DFT [solid green line in (b) and (c)] with S [dashed black line
in (b)], with S&, [dashed black line in (c)], and with SSV [dashed red line in (c)] NN description.

with ¢; (ciT ) being the annihilation (creation) operators, &;
being the diagonal on-site matrix elements, and y;; being
the coupling elements between sites i and j. For a periodic,
defect-free lattice we group the couplings y; j according to the
distance between sites i and j and include only couplings to the
n closest such neighbors. For example, first-nearest-neighbor
tight binding (n = 1) neglects all interactions except those with
direct neighbors. Application of Eq. (1) requires a judicious
choice for the set of input parameters S” = {¢;,y;—;} fora given
n. Obviously, the larger the chosen n is, the more faithfully
properties such as the band structure from ab initio theory or
experiment are reproduced. However, a larger n also entails a
much larger number of nonzero matrix elements in the tight-
binding Hamiltonian and thus an increased numerical effort.
For the case of graphene investigated here, only = band
orbitals contribute to transport properties [34]. We therefore
restrict the tight-binding Hamiltonian to an orthogonal set of
7 states describing this band. A very common and straight-
forward approach is to calculate the underlying band structure
employing an ab initio approach such as DFT [35,36]. The
tight-binding parameters can then be obtained either by fitting
the resulting TB bands to the DFT band structure or by first
transforming the DFT description into a strongly localized
basis from which the parameter set S can be directly deduced.
Taking into account the lattice symmetries of bulk graphene
only n y; need to be fitted in an nth-nearest-neighbor (NN)
description; consequently, a fitting approach works well. We
use the Levenberg-Marquardt algorithm [37,38] to fit a number
of parameter sets S¢, (n = 3, ..., 10) to the bulk band structure.

With a higher number of NNs taken into consideration the
accuracy of the tight-binding description increases. When
focusing on the part of the band structure containing the Dirac
cone near the K point (corresponding to the energy interval
+1.2 eV around the Fermi energy), third-nearest-neighbor
tight binding (n = 3) is sufficient for an accurate description
[see Fig. 1(a)] [34], defining the quasiparticle energy range for
which our bulk tight-binding model is valid.

A defect breaks the lattice symmetry and results in lo-
cal deformations. Consequently, a much larger number of
tight-binding parameters need to be fitted. As an example,
consider a 6 x 6 supercell of graphene containing one dou-
ble vacancy [see Fig. 2(a)]. Even when accounting for all
residual preserved symmetries a third-NN description requires
roughly 260 independent parameters. Finding a unique optimal
parametrization by fitting to a DFT band structure therefore
becomes unfeasible. Instead, an algorithm that allows the direct
calculation of the coupling parameters from DFT is required.
Within a periodic Kohn-Sham calculation, the orbitals are
delocalized Bloch wave functions, with no obvious connection
to the position of atoms. Obtaining tight-binding parameters
thus requires a basis transformation to a strongly localized set
of orbitals {¢/°°}. We use WANNIER90 as a computational tool
[39] to transform the plane-wave DFT basis into a strongly
localized Wannier basis [40,41]. The matrix elements of the
Hamiltonian Hi‘fj" described in the Wannier basis (W),
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FIG. 2. (a) Example of a DFT-calculated structure consisting of 70 atoms with a double vacancy at the atoms indicated in red. (b) DFT-
calculated defect geometry surrounded by a number of layers (highlighted by green and red) of primitive unit cells (curtains). The bracket
indicates the spacing between the defect and the bulk where curtains are attached. (c) Schematic illustration of a scattering geometry within

which the embedded defect is finally placed.
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TABLE I. Tight-binding parameter set values obtained from fitting (except Si°, which is taken from the Wannier calculation and used as
an initial guess). S}, is the parameter set that accounts for up to i NN parameters. The set presented here is optimized in the energy range
+1.2 eV around the Fermi level. The last row gives the averaged mean-square variations of the parameter values from one parameter set S, to

its neighboring set St

S (V) S (eV) S8 (eV) 8] (eV) S8 (eV) S5 (eV) St (eV) 83 (eV)
€0 0.29697 0.29499 0.29464 0.30003 0.30323 0.29570 0.08835 0.07893
" —291164  —292326  —2.95482  —3.03528  —3.11753  —3.14029  —3.09637  —3.28542
v 0.22317 0.22675 0.22625 0.23194 0.23803 0.23385 0.03508 0.03186
v —0.28900  —0.29228  —0.28632  —0.29412  —030412  —031542  —029678  —0.37544
Va 0.02480 0.02503 0.02445 0.02512 0.02598 0.02730 0.03617
Vs 0.05493 0.05380 0.05358 0.05532 0.05752 0.06778
Yo —0.02232  —0.02161 —0.02163  —0.02235  —0.02321
s —0.01295  —0.01257  —0.01260  —0.01299
s —0.02181 —0.02115  —0.02111
Yo 0.00716 0.00695
Yio 0.00400
1SE, — S/ 0.00134 0.00365 0.01049 0.01202 0.00615 0.05982 0.05204

are then just the tight-binding parameters yi?’jv (€) in Wannier
representation. We denote the corresponding set of the n’ NN
parameters by S{‘x}. A priori, there is no one-to-one relation
between the band-structure-fitted set Si, and the Wannier
representation S{,{;. In particular the orders of the included NN
couplings, to represent a given segment of the pristine bulk
band structure in the absence of defects with a preserved level
of accuracy, may not coincide (n # n’). Indeed, a fitted set
of third-NN parameters Sgt resembles the band structure of
pristine graphene far better than the corresponding third-NN
Wannier-based parameters Sy, [see Fig. 1(a)]. The reason
is simple: the effective parameters in S, are chosen such
that the missing higher-neighbor interactions are included
on a mean-field level, whereas such interactions are simply
neglected in S, For a variety of defect supercells in graphene
we find that a tenth-NN description resembles the defect band
structure exceptionally well [see Fig. 1(b)] while lower-order
NN descriptions based on Wannier functions lead, in general,
to significant deviations [see Fig. 1(c)].

While an accurate description of moderate-sized structures
on the level of tenth NN is readily possible, this straightfor-
ward approach has important drawbacks: the large number
of NN interactions substantially reduces the sparsity of the
Hamiltonian, leading to a much increased computational effort.
Moreover, schemes that exploit the locality of the Hamiltonian,
e.g., the modular recursive Green’s function method [42,43],
lose much of their efficiency.

An optimized strategy is thus to combine two ingredients:
an accurate tenth-NN description Si¢ of the local defect
structure and a lower-order S7, description for the unperturbed
regions of bulk graphene. We interface the two approaches by
introducing a smooth (quasicontinuous) transition region (see
Fig. 2). The key insight is that for pristine graphene an accurate
fitted parametrization S, can be achieved for variable n, 3 <
n < 10. For the maximum value employed, we have verified
that to a high degree of accuracy Si? ~ SI [see Fig. 1(a)].
Now successively dropping the most distant interaction and
refitting the remaining parameters to the DFT band structure
(see Table I for numerical values) ensures that values between
adjacent parameter sets Sf, and S, ! are compatible. We can

now smoothly change the number of NN interactions in the
transition region: starting from a tenth-NN (8‘1,? ) description for
the defect region, sequential layers (curtains) wrapped around
the structure contain a decreasing number of interactions
(n =9,8,7,...,3), until the outermost layer is described using
the Sgt bulk parametrization [see Fig. 2(b)]. Interactions y; ;
between orbitals i and j where i and j both lie inside the defect
supercell are described by Sy, while interactions between
a defect supercell orbital and a curtain orbital in curtain n
use Sf,. Interactions between orbital sites lying in different
curtains described by different parameter sets Sy, and Sg; use
parameters from the parameter set S """
The presented embedding method implicitly requires a
sufficiently smooth transition between adjacent parameter sets
i and ST The smoothness can be probed by the effective
suppression of reflection at the transition region. For the test
cases considered here we can compare the results of the present
embedding algorithm with a full S\ parametrization for the
entire scattering geometry (discussed below). With the fitted
tight-binding parameters in Table I and the sizes of our defect
supercells the transmission for the employed parameter sets
indeed agrees well with the S\ benchmark. The relative
parameter shifts between Sk and S are, on average, on the
order of 1072 (see Table I, last row). We find remarkably good
agreement in all cases.

III. BENCHMARK CALCULATIONS

As afirst test and application of our embedding approach we
consider ballistic transport through a graphene zigzag nanorib-
bon [Fig. 3(a)]. We perform DFT calculations using VASP
[44—47] in the local-density approximation (LDA) together
with a Monkhorst-Pack grid for k-point sampling of 25 x 25 x
1. The Wannierization is performed using p, orbitals at each
atomic lattice site and s orbitals in the center of each C-C bond
as initial projections for the disentanglement procedure needed
in the WANNIER90 code [39]. Having obtained tight-binding
parameters, we employ the Landauer-Biittiker formalism [48]
for transport calculations.
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FIG. 3. Transmission benchmark calculations. Graphene ribbons with a size of (a) 20.1 and (b) 7.1 nm with the position and size of a
defect-free embedded structure equivalent to that in Fig. 2. The arrows indicate the direction of transport. (c) Conductance of the ribbon shown
in (a) calculated using a defect-free supercell described by Si embedded in a S3, bulk (solid blue line) and without embedding using S3, (solid
green line). (d) Same as (c) for the narrower ribbon shown in (b). The dashed red line corresponds to a calculation using Si for the entire
geometry. The black arrow indicates an example of the expanded mode opening region.

We first consider a uniform, defect-free zig-zag ribbon
that should feature perfect transmission. We thus expect the
transmission as a function of the energy above the Dirac point

to be a staircase function with steps of height zhL? (notincluding
physical spin) whenever a new transverse mode opens in the
ribbon. Indeed, using S3, for the entire geometry results in a
perfect staircase function [see Fig. 3(a)]. For a comparison we
use our embedding approach where a small 5 x 5 supercell
parameterized with the set Sy is embedded into the Sj, bulk
using the curtain sequence outlined above. Together with the
curtains the embedded structure has a width of 5.2 nm. Placing
this embedded structure in a graphene ribbon of width 20.1
nm, we find almost no deviation from the perfect transmission
curves up to energies £1.2 eV around the Fermi energy for
which the bandstructure is faithfully reproduced [see Fig. 3(c),
solid green and blue lines]. As we expect the influence of
embedding to be largest for narrow ribbons, we consider a
second benchmark ribbon which is only slightly wider than the
defect structure [7.1 nm; see Fig. 3(b)]. Even for this extreme
case where most of the ribbon consists of the embedded struc-
ture, the transmission curves of the ribbon with the embedded
structure (solid green line) and without the embedded structure
(solid blue line) agree very well for energies up to 1.2 eV.
A comparison between a full S3, [solid blue line in Fig. 3(d)]
and S&? [dashed red line in Fig. 3(d)] treatment of the entire
geometry shows deviations for energies |E| > 1.2eV due to
the different energies at which the lead modes open. For the
embedded case the same effect leads to backscattering at the
boundaries between different curtains as indicated, e.g., with
a black arrow in Fig. 3. While, e.g., S5, predicts the opening
of a new mode in the lead at —1.15 eV, the Sy description
used in the center of the embedded region allows for a new
mode only at —1.19 eV, leading to backscattering in the energy
window between the two thresholds. These problems emerge
because S3, does not provide enough degrees of freedom to

accurately reproduce the band structure over a broad energy
region. To systematically improve this result one could use
optimized parameter sets Nr’i’t for different energy regions of
interest, correcting the small differences in mode opening
energies. However, since the deviations are small compared
to any defect influence and occur only at higher energies,
we avoid such adjustments. Finally, in the embedded case the
mode opening energies for different curtains may be slightly
misaligned, causing scattering into modes blocked by inner
curtains. Such an effect leads to sharp dips in the conductance
immediately before a mode opening [49] as observed at 1.12
and at 1.27 eV in Fig. 3. With such limitations in mind, the
present embedding method is found to be quite efficient and
accurate.

As a second benchmark system we model the setup of
the previously mentioned STM experiment [33]: a large,
freestanding graphene membrane is contacted via an STM tip
at site Fs. The probability |y, (7)|? of finding an electron at
site 7 is evaluated via the Green’s function as

Vi (F) = G(F.Fs). 3

Technically, we evaluate G on a rectangular sheet of graphene
(54 x 62 nm; see Fig. 4) consisting of roughly 10° atoms with
open boundary conditions [50] on all four sides emulating a
large-scale graphene flake. Structures of this size are far beyond
any size accessible by DFT but can be treated by a TB calcu-
lation involving the present embedding scheme. The obtained
scattering probability distribution is, in principle, directly ex-
perimentally accessible by a second STM tip acting as a probe.

We compare probability distributions for a pristine flake
with parametrization 8& [i.e., without embedding; Fig. 4(b)]
and in the presence of a defect-free embedded region of S\
[Fig. 4(c)] and find almost no difference. The sixfold scattering
symmetry resulting in a starlike pattern [Figs. 4(a), 4(b) and
4(f)] is due to trigonal warping caused by the deviation from
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FIG. 4. Benchmark calculations. (a) Schematic of the geometry with an electron source in the center and a defect-free embedded structure
placed as indicated by the rectangle. Open boundary directions are highlighted by black arrows; the black corners indicate the remaining
hard-wall boundaries. Scattering probabilities (b) without embedding and (c) with embedding when an electron carrying 1 eV energy is added.
(d) Schematic of the geometry used in plots (e) and (f). The dark gray region B indicates a ring with a radius between 12 and 18 nm from the
source position rs. (e) Plot of (b) and (c) along the cut marked by the dotted red line in (d). The inset shows the difference plot between (b) and
(c), scaled by 102. (f) Angle-dependent plot of (b) and (c) with the angle 8 defined as in (d). The solid red line refers to (b), and the dashed black
line refers to (c). The lines in (f) show the scattering probability from the source position rs into region B at an angle 8 & 0.057. A Gaussian

smearing with o = 0.05 is used.

the perfect conelike dispersion relation of graphene at higher
energies [51].

The good agreement between embedded and embedding-
free descriptions for both defect-free benchmark systems
clearly showcases the validity of our embedding method: the
slow variations in the tight-binding parameters caused by
switching from a highly accurate, local Si description to a
bulk Sgl fit results in negligible artificial scattering for the
range of energies for which the TB parametrization is valid.
The embedding approach promises a fast and accurate defect
description scheme to simulate transport in large flakes that
combines the advantages of purely DFT based calculations
with those of tight-binding schemes.

IV. DEFECTS

We now apply the embedding scheme to four different types
of defects: a double vacancy, a silicon interstitial, a Stone-
Wales defect, and a flowerlike closed-loop grain boundary (see
insets in the top row of Fig. 5). For the DFT calculations
we use supercells containing 32, 50, 70, and 128 atoms,
respectively. The disentanglement and Wannierization of such
large cells have to be done with great care and become
more challenging with increasing size of the cells. Supercell
sizes for the calculated defects were therefore kept reasonably
small. These cell sizes may not fully account for very long
range lattice deformations, i.e., dynamic relaxation of the
lattice. To estimate the associated error, we perform benchmark
calculations using larger cells (e.g., 126 instead of 70 atoms
for the Stone-Wales defect), which show that the change in
atomic positions are, on average, smaller than 1% of the lattice
constant. The resulting error is thus likely quite small.

Again, VASP together with an LDA pseudopotential and
a Monkhorst grid sampling is used with 5 x 5 x 1 k points
for the silicon and the Stone-Wales defects [Figs. 5(a) and
5(d)] and 3 x 3 x 1 k points for the double vacancy and the
flowerlike defect [Figs. 5(b) and 5(c)]. We place all four
defects in both our benchmark geometries and evaluate the
transmission (top row in Fig. 5) and the scattering probability
distributions (middle row in Fig. 5). We compare to a full
calculation using Sy in the entire transport structure (see
Fig. 5, top row). Even for our relatively small benchmark sys-
tems, the runtime of the embedding calculation is, compared
to the full-scale calculation, a factor of ~16 faster, clearly
highlighting the benefit of an efficient embedding algorithm to
treat large-scale devices. Obviously, the exact runtime speedup
strongly depends on the geometry of the structure, on the
number and size of the embedded defects, and on the numerical
implementation.

The various defects have strongly differing influence on
transport properties. The very weak scattering at the double va-
cancy can be understood as a consequence of the conservation
of the AB-sublattice symmetry that suppresses backscattering
[49]. For the Stone-Wales defect we find some change in the
transmission function around E = 0.5 eV [Fig. 5(c)]. The
largest modifications are induced by the flowerlike defect [see
Fig. 5(c), panel (i)]. It has thus by far the largest influence on
transport and thus the best chance to be uniquely identified in
the experiment. One obvious reason for this defect to show
up so prominently is its size: the flower defect is substantially
larger than the other defects discussed here, most importantly,
much larger than the de Broglie wavelength associated with
the electron at the K point (2.5 A). Consequently, scattering at
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FIG. 5. Results for defects. Top: The conductance for four different embedded defect structures (solid blue line) using S* in the bulk and
without embedding (dashed red line) using S in the entire structure [geometry is as in Fig. 3(b)]. The insets show the defect types treated:
(a) silicon interstitial, (b) Stone-Wales defect, (c) double vacancy, and (d) flowerlike grain boundaries. Middle: Scattering patterns for geometries
as in Fig. 4 calculated at 1 eV electron energy with embedded defect structures as in Fig. 2 at the position indicated by the blue rectangle in
Fig. 4(a). Bottom: Angle-resolved averaged scattering probabilities, with the angle and averaging area as defined in Fig. 4(d). The dashed black
curves show defect-free scattering probabilities, and the red line shows the scattering probabilities in the presence of the corresponding defects.

this defect does not just lead to diffraction but casts a “shadow”
leading to the pronounced minima in the scattering wave
function behind it. For all investigated defect structures the
transmission curves for the embedding and the full tenth-NN
description match perfectly up to about 1.2 eV. Comparing
the scattering patterns of different defects further corroborates
these results: there are only minor changes compared to the
defect-free calculation [Figs. 4(b) and 4(c)] for the double
vacancy, the Stone-Wales defect, and the silicon interstitial (see
Fig. 5, middle row). Only the flowerlike grain boundary defect
causes significant backscattering, leading to a pronounced
region of strongly suppressed transmission. A more quanti-
tative comparison via angle-dependent scattering amplitudes
[compare Fig. 4(d)] highlights the strong changes due to
scattering at the flower defect (see Fig. 5, bottom row).

V. CONCLUSIONS

We have presented an embedding approach to incorporate
ab initio tight-binding parameters from density functional

theory into a large-scale tight-binding simulation. We combine
a local tenth-nearest-neighbor description determined via pro-
jecting ab initio results onto Wannier functions with a lower-
order tight-binding parametrization fitted to the pristine bulk
band structure. Our approach allows the accurate treatment of
large-scale devices containing local defects. We demonstrate
our technique for four prototypical defects in graphene devices
and find excellent agreement between our embedding approach
and a computationally much more expensive full tenth-nearest-
neighbor benchmark calculation. An extension of our method
to extended one-dimensional defects such as grain boundaries
and also to different materials seems straightforward and
could lead to further generalizations. The calculated scattering
patterns should become experimentally accessible by a double-
tip STM setup. We therefore expect experimental tests in the
near future [33].
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