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We extend projection-based embedding techdiques toWbulk systems to treat point

n)n—additive kinetic energy con-

defects in semiconductors and insulators. A a

&..\161’3 orthogonal subsets of orbitals. We

have implemented our approach in %lafr‘VASP software package. We demon-
S

strate its power for defect structure

tributions we construct the density partiti

n and polaron formation in titania, two

challenging cases for conventlona Koht=Sham density functional theory.
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Publishihg INTRODUCTION

Ab-initio electronic structure theory for bulk materials has experienced tremendous ad-
vances in many areas such as density functional theory,!™ improved post-DFT? ! and, e.g.,
van der Waals functionals,'? as well as highly accurate quantum cliemical'® !> and Monte-

%Nanced theoretical

ple, defect structures re-

Carlo approaches'®. However, many problems are still out of reac

description due to their size: the accurate description of, for,e
quires both a highly accurate treatment of the local defectzzegion, asswell as the treatment
of a large number of atoms of the environment!”. It is o I)\allepging for a single method
to meet both requirements. Embedding is therefor aq;ui ble strategy to overcome this
hurdle. Its underlying idea is to treat the localfstruc or, more generally, the subsys-
tem of interest by a high-level method while retﬁﬁ-ng"ale environment with the help of a
numerically less demanding lower level metkgd.\é SLis-{;ently combining different electronic
structure methods within the same cal ul?ﬁbq 1s«both the advantage and the challenge of

the embedding approach®®. N

Several embedding schemes haye be}rbposedlg’w, often relying on some form of a local

embedding potential V(1) h:tg\e iates the interaction between the subsystem referred

in the following as the cluster amsurrounding environment. Typically, subsystems are

treated in the presence f‘VeS,.Sir) [or Ve (r,1')] using a high-level method while the envi-
it

ronment is handled nctional theory (DFT). The individual subsystem densities

are then added to ]{b n an /approxnnatlon for the total density of the entire system. While
conceptually siniplery Jocal'embedding potentials feature the distinct disadvantage that no
set of mutual )chogonal orbitals of the entire system exists. Consequently, evaluation of
the total€nergy begomes challenging: in particular the kinetic energy needs to be approxi-
mated! Seve Joupslg’%’go’?’2 used an optimized effective potential method to recover the

ki QQC nerg} given a total electron density.

not%gr embedding strategy is based on the density matrix rather than the density. For-
7135(3 G al. presented an embedded mean-field theory®? partitioning the one-particle density

trix of the system based on its natural orbitals. A single Hamiltonian then describes the
entire system, avoiding any issues with evaluating the kinetic energy for cluster and environ-
ment separately. Additionally, this approach, by construction, allows for charge exchange

between the cluster of interest and the environment. However, a direct extension to plane-
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Publishiwgs e basis sets used in periodic solid state computations seems challenging. Density matrix
embedding theory®* introduces bath states that allow for representing the embedded clusters
as an open quantum system: charges are distributed between bath sites and embedded sites
allowing for arbitrary (i.e., also fractional) partitioning of charges between the embedded
subsystems. /

Manby et al.?> use a projection-based scheme to ensure mut Mnality of orbitals

22-25

In the present article, we adapt such a s extended systems with

belonging to different subsystems. Such an approach was explored in various non-periodic
settings xKy&K

the specific application to a frequently used plane-wave ¢. We determine Wannier-like
—_—

orbitals localized within the cluster by performing unitary rsta ions within the subspace of

fully occupied Kohn-Sham orbitals while the or (S?gona plement of remaining orbitals
resides within the environment*. During thwm ion cycle for the cluster involving
tals

an advanced functional, the environment \ main frozen and thus orthogonality is
preserved. Such an approach avoids the_inaecuracies associated with approximating the

kinetic energy

In the present paper we dem stg\ 1c“power of our embedding scheme in a proof-of-
principle calculation addressi & l ms for which standard Kohn-Sham DFT is known
to be inadequate: defects in 8111 polarons in titania. We use the following hierarchy

of methods: the cluste “twsm:ed by the (expensive) hybrid functional PBEh while the

environment is treatgd on by/the PBE functional. We show that this embedding scheme

implemented in the 'enna/Ab Initio Simulation Package (VASP) is robust and efficient.
We emphasize tﬁ:t e present embedding scheme is not limited to hybrid-DFT in DFT
embeddings. Kuture extensions will address the treatment of the cluster by RPA or correlated
wavefunefion Approaches such as coupled cluster®® or many-body perturbation theory based

on a ¢onplet ct/ive space calculation®”

-

II. TE&JHNIQUE

<

We partition a system into two parts: a cluster of interest A with atomic sites 7; 4,
(j = 1,...,M4) with M, the number of atomic sites included in the cluster, and the
surrounding environment B, containing Mp atomic sites 7,5, (j = 1,..., Mp). In a first

step, the entire system (A + B) is solved using a single, comparatively cheap exchange-

3
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H ;) = &i i) (1)

yielding Kohn-Sham orbitals |¢;) with orbital energies &; and the density matrix

V(7)) = ﬁfi (Wil 7) {77 |i) <\ (2)

with occupation numbers f; € [0,1], where the index i = 1,.% ton goes over all orbitals
and physical spin. Note that we we have not include&:‘i{t mpling in the present
ansatz, since it is not straightforward to treat theftransformations at different k-points
independently. We aim to find a unitary rotatien within }he subspace of fully occupied
orbitals (f; = 1,7=1,..., N) that yields a set jlorbit?ls aligned with the atomic orbitals

orbitals includes both the site index as ial and angular momentum quantum

|a) localized around the atomic sites of th% Phe index k = 1,..., N4 of the atomic
1 as.r

numbers. To this end, we first Calculat&‘eu\ﬁqﬁtal overlap matrix W,

and then perform a singular &\\omposition of W according to
W=U-D VI (4)

with D = diag?%y ry matrix V represents the rotation in the space of the N
at opti

occupied orbita mally aligns N4 of these orbitals with the atomic orbitals |«;)

keeping the rémaining N 4 orbitals orthogonal to each other and to the optimally alligned

orbitals. M'he singular values o; provide a measure for the degree of overlap between the

rotatedsatomic opbitals |3;) and the rotated orbitals |¢;),

— 3 |pi) = ZVEJ‘ ) 1Bi) = Z Uij o)
&3 ’ ’ (5)

S (Bl = { IS b s
o o 0, >Ny

Orbitals with indices ¢ > N outside the space of occupied orbitals are not included in the
singular value decomposition and thus unaffected by the rotation, |¢;) = |¢;), Vi: N <i <

Niot- Using the rotated |¢;), we can thus partition the occupied space into orbitals that

4
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Publishih;gv > an overlap with the |«;), and those that do not. Ideally, if the Kohn Sham orbitals are

well covered by the atomic wavefunctions, we expect the singular values o; to be close to 1.

<NA is

e emb

After the orbital rotation, a subset ’¢A> of those i = 1,..., N4  with N
optimized using a more expensive exchange-correlation (XC) functional EXC, e.g., a hybrid

functional®®4° while the orthogonal complement of the N2, = N ! environment or-

e
N the Hamiltonian

on the orbitals A, i.e., in the electrostatic and XC mteractl%i in enforcing the Pauli

bitals }(bf’? > remains frozen. The latter are still fully included in t

principle. In principle, this implies that one determines t iattenal point of the projected
Hamiltonian

f= (1= 1) (o })H(_ %@ (0?)), (6)

i€B

practice, the implementation in most pla s is straightforward: since the number

where H is the Hamiltonian of the energy furtetiona, ) be introduced below (Eq. 9). In
of plane wave basis functions preclud ac dlagonahzatlon of the full KS Hamiltonian,
iterative Krylov-subspace methods d@r h{ce gradient techniques are employed to refine

—?rrﬁ')rbitals are usually explicitly orthogonalized in

the orbitals.*! In such schemes, Kohn
each step or kept orthogonal :&1 ropriate constraints. Consequently, one must only
constrain the optimization togﬂwl et A and make sure that the optimized orbitals A
are kept orthogonal to h?ts$zen B orbitals. Such an approach required only minimal

modifications to the FJASP cedes which are discussed below.

In general, thediu r offorbitals N2 used in the embedding procedure may be smaller
than the number of atemic basis functions N4: in principle, one may choose any subset of the
localized ob1 I} < NA . < Ny4. In practice, we sort the rotated orbitals by their singular
values o;and4hoose the N4 ompb Orbitals corresponding to the largest o;, where NA omb 18 chosen
according to the number of orbitals of interest within the cluster. A typical threshold will

be@s>"0.5. We find that our results do not strongly depend on N4

b as long as the number

ptimyaed orbitals is sufficiently large as to properly describe the local bonding. When
?0351 ering the change in energy as a function of a smooth deformation of the geometry,
fox_example when studying the energy along a reaction coordinate, N should be kept
constant for all points along the trajectory to avoid artefacts due to changes in the number
of embedded orbitals. We will discuss the choice of N4 in more detail in the results section

below.
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PublishingWe note that after the orbital rotation the |¢;) are no longer eigenvectors of the Kohn-
Sham Hamiltonian H. The diagonal matrix elements of the Hamiltonian are given by the

expectation values
i = (¢ H |¢y) . (7)

These values are obviously different from the original eigenvalwhey observe the

condition 5

i = i \ (8)
i=1 i=1 ‘)

since traces are invariant under unitary rotations.

If fractionally occupied orbitals are present in the rigin% calculations of the entire sys-

tem, we proceed along the following line. First, th@acgina y filled orbitals are not included
in the singular value decomposition. Second, aﬁ\%m&
T

ally filled orbitals are included in the subgi‘w

used in the subspace of the N < Ny f IWed orbitals. This procedure might require

v to unoccupied orbitals, fraction-

invariance condition of Eq. (8) is only

more careful considerations if quantdmschemigtry based correlated wavefunction approaches

for the cluster A and the environ we write the energy functional for the entire system

are used. o
Taking into consideration % t exchange-correlation functionals will be employed
t

A+ B as
Eg= X510l T l¢i) + %Eﬂ[p] + ExGlva, vs), (9)
where p(7) = (<N1
& 1 Niot
y. Eulp) =5 Y fuf; (i 51Cli ), (10)
y. 250

ﬂ
with &@éﬁlg the Coulomb operator. The mixed exchange-correlation functional E{E [y, V5]

e density, and Eg[p] the Hartree energy

ﬁ
c@ntaini oth the lower (B) and higher (A) level functionals can be written as

\ < B8, 1) = Edolial + Efolys] + B2y, val, (11)

where E4. is the high level exchange correlation functional, EZ, is the low level exchange
correlation functional, and Ei is an approximate exchange correlation functional used to

treat the interaction between subsystem A and B.

6
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Publishing'lo use Eq. (11) in practice within our embedding approach, the contribution due to the
interaction between the two subsystems, Fi& can be, for instance, approximated by the
lower-level functional (B) applied also to the environment, i.e., B[y, 78] — EZ:[va, 78]

More formally, this approximation yields

EXt[va,vB] = Eclva + 78] — EXclva) — Ei?@\ (12)

Such a simple approximation allows for very expensive function )o be used in the cluster
A, including the RPA or high-level correlated wavefuncti X\

pproaches. The drawback is
that the error introduced in such a mixed approach is di Dt"be.quantify a priori.

In the present work, we have chosen a more precise%‘iﬁio for the interaction between
the two subsystems, namely we adopt the high lgvel funetiofial EX[va, v8] — Exalva, v8)-
This is possible, since we presently consider b(d‘f

Tl u&ionals as the high level functional
! -

A, that can be evaluated for the entire sysfemn with, quite reasonable computational effort.

int

In this case, the interaction term EX( an\bexﬁor lly written as
- o
Exg [y, 78] = Blelaa Paw] — Bxclval — Excles]. (13)

N
This is equivalent to the formall}&m{ approximation

\'5'%, VB] = EQC [Ya + V8]

'%oximation is still very efficient when optimizing the orbitals

in the subset A andékeeping orbitals in B frozen. The key point is that the contribution
é) is constant for the Hartree (compared Eq. 10) and exact
1 Niot

of terms invova/ (1,9
exchange energy gh\
Eifn) =5 ) fifi(idlIClii). (14)

/ / i,j=1

Hencd these térns do not need to be calculated for the optimization of orbitals in A. In
plane wave cddes, we can make use of this fact easily, by simply restricting the action of the

1ilto§ian on the subset of optimized orbitals |¢), i = 1,..., N,

omb- For the exchange

%?I]\this means that we only need to calculate

Vo |oi),

where V. is the exact non-local exchange potential. This speeds up the calculations by a

factor Ny /(N 4+ Np) greatly reducing the numerical effort compared to full hybrid functional

7
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Publishigedculations. The orbitals in A can now be efficiently optimized by minimizing the energy
functional (Eq. (9)), while the orbitals in B are kept frozen. The main drawback of such a
procedure is that during the optimization of the orbitals in A, any change in the electronic
structure of A due to a more accurate XC functional cannot lead to a redistribution of charge

in B. /

To improve upon this point, the embedding can be made sglf<epnsistent by alternating

between subsystems A and B in freeze-and-thaw cycles: afterlie initial solution of the

entire system using the lower-level functional, an orbital tiomjs performed to partition

into orbital sets A and B. Then, starting with A, a, ter ingly<one of the subsystems is

optimized while the other one is kept frozen. Each ¢ de th%‘c optimizes the orbitals A uses
the higher-level XC functional A while each cyc@a‘c 0
the lower-level functional B. For the example b{ﬁro) in titania discussed below, we find

rapid convergence after about six freeze-a K}\R} cles!®

Since the interaction of the cluster g,]\g defect) with its periodic image needs to

izes the orbitals in B employs

be minimized, conventional defect deh s hampered by the requirement of large su-
percells. If, for example, the bu a al?ould well be described by generalized gradient
approximation (GGA) XC fu tlon only the defect structure requires more advanced
techniques such as hybrid fun pproaches conventional techniques still require an
expensive evaluation o hﬁgre exchange contribution. The embedding procedure out-

lined above is ideally#Suite gnificantly reduce computational effort while retaining high

accuracy. Note, hdwever, that the approximation to the total energy (Eq. (13)) is tractable
only in case o tz: bedding of hybrid functionals into DFT. A future application of our
formalism to ‘the eémbedding of correlated wavefunction methods into hybrid functionals will
require the uge of he approximation of Eq. (12) to the total energy, the quality of which

remaifs to be lored.

)

11 Il&PLEMENTATION IN VASP

<

We have implemented the embedding scheme outlined above in the Vienna ab initio
simulation package (VASP) using the projector augmented wave method of Blochl in the
implementation of Kresse and Joubert*?#347. Usage is simple: in a first step, a GGA DFT

calculation of a system is performed. In a second step, the localized atomic basis functions
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Publishifag) are defined. To determine the localized orbitals, our implementation currently supports
projection onto the PAW basis functions (the pseudo partial waves) and standard spherical
harmonics (including hybrid orbitals such as sp?) with the radial dependence taken from
suitably scaled hydrogenic functions. VASP then starts an embedding calculation, performs

the orbital rotation and optimizes the set of Ny, orbitals localiZ(?/ on the cluster A, while

the remaining fully occupied Kohn-Sham orbitals of the enviFfommen are frozen (for

the rotation and the number of optimized orbitals). Is of A are now further

spin-polarized calculations the two spin components are treated“ndependently in terms of
T %ﬂx

optimized using a more expensive hybrid functional. D 6\2?&% freeze-and-thaw cycles,
no further localization procedure according to Eq. ( -1; 1"@9111 ed, and orbital sets A and
B are interchanged. To enforce orthogonality inf practices<we only reorder orbitals so that
the frozen B orbitals have the lowest orbital ifidices, @ then simply freeze them. Typical
plane wave DFT implementations are based%ﬁ\n%v—space or conjugate gradient methods
(the plane wave basis is too large for exact diagoralization to be efficient). Convergence is
accelerated by using procedures like irectNersion in the iterative subspace,*” that always
require mutual orthogonalization of cterent Kohn-Sham orbitals in each calculation

\E\q pective of any embedding considerations. VASP
uses a modified Gram SchmidtMure,41 where the lowest orbitals are normalized and

d‘hx%es are then made orthogonal to the orbitals below. Due to
A

step to guarantee numerical stabi

orbitals with greater b

reordering of the orbitals,

indices than the ?o ith

rbitals (as well as all virtual orbitals) possess greater orbital

tals an will thus be kept orthogonal to the frozen B orbitals during

optimization.

We curren )void k-point sampling in the embedding calculation since the orbital ro-

tations af différent“k-points are not independent of each other. Likewise, forces are not yet
implemented 411" formalism. The geometries used in this work were taken from Ref. 44
fopsthe efechs in silicon and where relaxed using the HSE functional similar to Ref. 45 for

the polafons in titania.

YO\ compare energies calculated from the functional Eq. (13) the full exchange energy

h all orbitals has to be evaluated only once, after self-consistently converging the orbitals
of A. Note that for the case of hybrid functionals, this is equivalent to evaluating Eq. (9)
for the final set of orbitals. We benchmark our embedding approximation against a fully

self consistent optimization of all orbitals using the hybrid functional. Additionally, we also


http://dx.doi.org/10.1063/1.4993795

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

Publishing

energies [eV] (error [meV])

Defect Hybrid GGA GGA* Embedding

H 300 242 (-586) 2.99 (-17) 3.01 (10

- )
301 (1) 3.04 (27)
- 3.06Z

71) )

09) 3.03 (-19)

04) 3.34 (-423) 5@?)\
) )
)

(-5
X 301 244 (-571
Csy  3.05 244 (-6
T 377 286 (-9

VJT 414 3.13 (-1010) 4.52 (377

Ne)

( )
423 3.12 (-1113 ( 5)

4.83

—

TABLE I. Comparison of defect formation energies for different t types in silicon. All energies

in eV, errors in brackets [meV] are deviation from fidllxhybrid bénchmark calculation. The right

GGA column denoted with an asterisk represent ag single- @” evaluation of the full hybrid energy
L

functional using the corresponding nonhybrid‘é\‘NE orbitals.

N

compare to calculations using the pure &(ﬁagﬁonal, and to the hybrid energy functional
evaluated with orbitals obtained fro \s}ug GGA functional (PBE). Obviously, both the
o

embedded and the PBE orbitals é&(onstruetion, not self-consistent with respect to the
hybrid functional. In compar mai\wu ull self-consistent optimization, a single evaluation

step using the full hybrid functional with non-self consistent orbitals takes a small amount

of time while substanti improving the accuracy: errors in the approximate evaluation of
the interaction between gubsystems in Eq. (12) are eliminated. For pure GGA, we denote
corresponding e ies eé asterisk (*) in the following.

N

IV. R U}J
_~ £
A. oint ge cts in silicon
ﬁ

S asirst practical test of our new algorithm, we consider point defect structures in

?ﬂ?o& . We use a 64 atom supercell using I' point only sampling. Due to the local-

d nature of the covalent bonds involved, GGA Kohn-Sham DFT fails to correctly repro-
duce experimental observations. By using hybrid functionals or even more advanced RPA
formulations*, these problems are mitigated. However, comparison with more accurate

correlation functionals such as RPA and experiment show that currently available methods

10
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Publishinigld a wide range of predictions depending on the employed functional®, highlighting the

necessity to move towards higher level correlated wavefunction approaches.

Due to the large supercells required to avoid interaction of the defect sites with their pe-
riodic images, embedding the orbitals close to the defect site seems desirable. As benchmark
for our embedding scheme, we consider defect formation energies @f a set of common inter-
stitial defects and vacancies. We aim to reproduce the energe cswsf fulllhybrid functional
calculations based on PBEh by a cheaper embedding calcul which only a few (six to
ten) orbitals localized in the immediate vicinity of the d e to be the A orbitals of
the cluster) are treated using the hybrid functional, l_lile e‘\emalmng 118-122 orbitals
(taken to be the B orbitals) are only treated by PBE.\We aléy compare our results to purely
DFT-based predictions.

For Si defect calculations, we choose as atom rbi‘ga_D |a;) the PAW pseudo-partial waves
of the Si atoms at and directly adjacent toh&\ fect gite, resulting in N4 = 16 (vacancies) or

-

20 atomic basis functions (one s and thréey Rpchat atom) for most cases. Increasing the number

of basis functions per atom increase t 1 overlap of the occupied Kohn-Sham orbitals
with the defect site at the cost o lar £ N, 1, and thus a larger overlap matrix W € CNa N
of Eq. (3). Consequently, t smgular values o; increases. To obtain a set of
orbitals well localized at the defe , we choose all orbitals with singular values o; > 0.5

as embedded orbitals. his}ng:edure yields a number of selected embedded orbitals N4
(T-def;

emb
from 9 (X defect) tod6 )y t), in line with the number of Si-Si bonds one would expect

for the respectiveddefeet, sitg§. For example, each of the two defects atoms of the dumpbell

defect (X) inter congly with four close neighbors in the surrounding lattice and with

the other atomuin/the dumpbell, yielding a total of nine covalent bonds. Indeed, we find nine
singular alue$ substantially larger than 0.5 for this defect. The chosen PAW basis functions
yield f set o {itals with a bimodal distribution: a significant number of orbitals with
oua 1, yell seperated from delocalized orbitals with small overlap o; ~ 0 with the defect

. T hé)threshold of 0.5 is therefore most of the time a good compromise between choosing
3'1'171\74 possible orbitals (which will include orbitals with very small singular values) and too
few orbitals that will not allow for reasonable optimization. Note, however, that care must
be taken to check that there are no singular values close to the chosen threshold, to avoid

arbitrarily including (or discarding) orbitals upon small fluctuations in ;. Due to weakly

broken spatial symmetries around the defect site, o; values often cluster, with several near-

11
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Publishifiggenerate values of o; corresponding to localized orbitals related by symmetry operations
of the bulk crystal. Using only a part of the subset of such near-degenerate orbitals would

result in an artificial breaking of symmetry and should be avoided.

As mentioned in Sec. II, calculating the final energies for our hybrid functional embedding
approach and Eq. (13) will be equivalent to evaluating Eq. (9) o/] final set of orbitals.
We therefore also provide values for a single evaluation of the BD;% functional using
all converged DFT GGA orbitals (i.e., not just the ones IOCK the defect), which we
denote by an asterisk (*).

'--..._,_

Our results for various defect structures are summ%ij: b. I. Overall, we find excel-
lent agreement between the hybrid functional be 5 our embedding approach. For
simple, non-metallic defects such as the dum n‘Buratlon (X), the hexagonal hollow
(H) and a lower-symmetry variant (Csy) findshat both the embedding as well as the
evaluation of the hybrid functional wit tmvel DFT orbitals produces good agree-
ment with benchmark calculations (see séegnd column of Tab. I). By contrast, the metallic
tetragonal site is badly described, by \FT\Lt features one interstitial Si atom coordinated

to its four nearest neighbors, so the local coordination of the interstitial is identical

to the other Si atoms. This p \ﬂw\le unique insofar that the highest occupied orbital is

—

threefold degenerate (ts metry)“but only occupied by two electrons. This degeneracy

is preserved in DFT ee fractionally occupied orbitals with occupation numbers

= 2/3. Conse {tentld, ’?e evaluation of the hybrid energy functional based on these
orbitals fails to y reasenable formation energies. By contrast, the embedding method
locally break§ the gen racy as does the full hybrid calculation, leading to good agreement
of the e ed91n esults with the benchmark (see T, VJT and V lines in Tab. I). We note
that om.our Mare the full hybrid calculations takes ten times as long as the embedded

one, with a relative error of 0.4% in total energy.

%rr?bults compare poorly with experimental data: one important reason is the inter-
n o

periodic images of the defects to the supercell size. We therefore consider a larger

rcell of 512 atoms, still with a single defect. We find a substantial change in results for

the larger cell (compare Tab. II), that now fit well to experimental results for the H defect.
To achieve better agreement also for vacancies (V) requires a more accurate treatment of

electronic correlation (e.g., RPA) or inclusion of Van der Waals contributions*®.

12


http://dx.doi.org/10.1063/1.4993795

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

Publishing energies [eV] (error [meV])
Defect Hybrid ~ GGA GGA* Embedding Experiment
T 4.97 3.65 (1314) 5.17 (198) 5.13 (165)
H 422 3.51 (712) 4.19 (38) 4.25 (28) 4 -4.7
\Y 5.06 1.86 (3202) 5.55 (482) 5.08 (22) .
TABLE II. Same comparison as in Tab. I for an eight times larger Q(—; halnlng 512 atoms.
Rightmost column shows the range of available experimental data taken fgom [48-57].
‘--....,_

B. Polarons in titania

S

As a second demonstration of our method, five consi the formation of polarons in
titania. We consider a 2 x 2 x 2 supercell with 24 Ti and 28 O atoms in the rutile structure.
In an accurate hybrid functional descriptign, additional electron localizes, distorting the
lattice and forming a small polaron. ghﬁ\btortlon decreases the energy compared to a
delocalized charge. A full hybrid fufictionakgcalculation yields a decrease in energy by 514
meV for the distorted geometry. Q\v:hse\this value in the following as benchmark for our

laron

embedded description of the po 'oncerning the atomic basis functions |a;) used for
the initial localization, we typically use the one s and five d orbitals of the Ti atom centered
at the small polaron deférmation, as well as all s and p orbitals of the six nearest neighbor
oxygen atoms, yielding a qi:llf N4 = 30 orbitals. Geometries for the distorted structure
were relaxed usin calgtilations.

Our resultsf rh?b{na polaron formation energy are summarized in Tab. III. Density
functional gh %invoking only a local density approximation or a GGA functional is not
capable 6f reptoducing small polaron formation predicting even a negative energy gain (i.e.
energf costs) of 355 meV to form the polaron. Inserting the DFT orbitals in the hybrid
eneLgy ct1)11a1 leads to a correction of the sign. However the energy gain is underestimated
by.a facg)r of two (270 meV), see Tab. III. A single-cycle embedding calculation yields a
?ﬁght\y arger error predicting 190 meV. The origin of this error is obvious: while the hybrid
fuuctional tries to localize the charge in the cluster region A, the surrounding region B
cannot react to the substantial change in the electrostatics, since all B orbitals are frozen.

Subsequent freeze-and-thaw cycles rapidly improve the result: we alternate between op-

timizing the two sets of orbitals A and B, one with the expensive hybrid, the other with

13
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FIG. 1. Isosurface plot of charge variati A&e ensity compared to the previous iteration
ow

(for iteration 1 the difference to DFT
Odd iteration numbers (top row) d‘\o optimization in the cluster A using the hybrid
functional, while even iteratio 0\onttom row) correspond to PBE optimizations of the

environment B. ‘\

Red (blue) denotes density decrease (increase).

pure GGA (PBE). ’)ergence in about seven iterations, quite independent of the
number of embe ed 1t NZA (Tab. III). As minimum requirement for N2 = the Ti

atom at the ¢ r 0 e dlstortlon and the surrounding oxygen atoms need to be treated ac-

curately, whic already achieved with as few as six orbitals (Tab. III). Note that choosing

only the ®ent#l Ti'atom as atomic basis, N4y = N2, = 6, yields a smaller polaron energy

e
than €hosing six orbitals with the highest singular values from the N4 = 30 localized
orbitalssncluding also the closest oxygen atoms. The reason is that in the latter case the
re onseyf the surrounding shell of oxygen atoms is - to some degree - also treated by the

rid functional. However, further increasing the number of localized orbitals N4 by, e.g.,

~
also including a shell of neighboring Ti atoms does not result in a stronger overlap of A

orbitals on the central Ti atom as the localization procedure does not distinguish between
the different atomic basis functions |a;). Consequently, such a large N4 would require a

comparatively large N2 | to ensure that orbitals close to the central site are included in the

14
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PUinShing Method cycles| Egist [€V] Eideal [€V] AE [meV]
Hybrid - -972.85  -972.33 514
DFT - -688.17 -687.81 -355
DFT* - -962.81  -962.54 270
Embedding* 1 963.70 06352 & N\
Ny=30NA, =14 2 -963.36  -963.12 ‘)40

3 -963.47 -963.1\ 3

4 -963.41 - Q“-\ 26

5 -963.45 (-962.9 459

6 -96344 2.9) 462

7 @L& 7-962.98 475

Noi=30NA, =6 7 9630 “2062.94 460
NA =8 7 ‘V -962.95 459

NA, =12 Nﬁm.% -963.00 454

NA L =20 % “.-963.50 -963.02 474

N :‘&X -963.59  -963.08 514

N4=90 N;‘n&j\ﬁf -963.55 -963.08 462
Ny= d,=6 7 -963.38  -962.96 420

TABLE III. Energies of the orted Fgist and ideal Figeqr lattice structure of charged rutile titania.
The energy AFE isfgained by /orming a small polaron. Energies after seven iterations are given

for different si

siwbedded region. Different methods are labeled as follows. Hybrid: full

hybrid funcgio alculation used as benchmark; DFT: direct evaluation of the energies using the

*: evaluation of the hybrid energy functional using the orbitals from the

,ﬁ
PBE alculatS) % embedding: embedding calculations as function of the number of freeze-and-
théwcycles at’ fixed number of localized atomic orbitals V4. After the unitary rotation to localize

orbigals a)ound the defect [Eq. (5)], we optimize a subset Né?nb < Ny of orbitals in the embedded

EOH\A as noted.

15


http://dx.doi.org/10.1063/1.4993795

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

Publishing? Hybrid (b) DFT Embedding
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Dot Q2@ Q®QE 0O
O
O

O
@O

Unpaired spin density Difference to hybrid benchmark ;}rence to hybrid benchmark
positive - negative \ negative

FIG. 2. (a) Isosurface plot of the spin density (p4 — i%verged polaron wavefunction

in titania, using a full hybrid functional calculation, see from (100) direction. Grey (black)

spheres correspond to Ti (O) atoms. The plot is ntered a nd the Ti atom at the center of

the distortion. Tourquois (yellow) denotes p081tswe0gt signs. (b,c) Isosurface plot of the

difference in unpaired spin density between ) embedding] and the hybrid benchmark

(a). Blue (red) corresponds to a density 1\4\ ecrease compared to (a).

embedded calculation. Otherwisegracc y‘Is lost. Indeed, we find a better agreement with
the benchmark for Ny = N2 X\b{m for Ny = 90, N4 =30 (see Tab. III). Since the

numerical effort of the embeddl lation scales linearly with N4

b 11 practice a small

N4 that allows for Ny ﬂ‘-S)referable
It is instructive to'followthé charge density variations along the freeze-and-thaw cycles
[Fig. 1]. Addltlo 1

rge /s localized in the A cycles using the hybrid functional in the

cluster (top ro 1n 1 . The density spreads out again and the environment relaxes in the

B cycles whe t orbltals B of the environment are optimized using the DFT functional.
Howeverf&then ag itude of these changes quickly decreases with the iteration number and
ell—

yieldsfa erged density (and well-converged energy) within 7 iterations.

The r1d and the converged embedded unpaired spin densities closely match (Fig. 2)
%contrast the DFT density does not show a strong localization of the surplus elec-
at all (Fig. 2) (a). Indeed, projecting the converged polaron orbital (i.e., the occupied
orlty spin Kohn-Sham orbital with the highest energy) onto the central Ti atom of the
distortion yields quite small values for the overlap (0.39) for DFT, while the full hybrid
(0.69) and embedded calculations (0.65) agree quite well. This underlines that despite the

correct sign for the energy gain when using the DFT orbitals in the hybrid energy functional,

16
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Publishitig DFT description of the charge density is qualitatively deficient.

V. CONCLUSIONS

We have demonstrated an embedding technique for extended pezddic structures based on

a suitable rotation in the subspace of fully occupied Kohn-Sham orbitals, Using a projection

on local basis functions, a set of orbitals may be localized at a Si e} interest, for example a
defect. Subsequently, these localized orbitals inside the cluster‘ean new be optimized based
on a more expensive exchange-correlation functional, su ‘apa.hybrid functional involving
the exact evaluation of Fock exchange. Since excha,“{ji\itza ions within the frozen envi-
ronment are neglected, the computation time isgdrastieall S1reduced. The response of the

environment to the charge rearrangement in %ﬁus@ can be self-consistently included

by freeze-thaw cycles in which alternatinglyﬁ i‘gm’s in the embedded cluster or in the

environment are optimized. \
We have implemented our ansatz iwpular VASP software package. As proof of
0

principle, we have applied our metho #Y;WL roblems of current interest: a set of defects
in bulk silicon, and small polaron w titania. We find excellent agreement with (much

more expensive) benchmark b rid calculations.
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