/_\ I P I The Journal of

Chemical Physics
Analysis of and remedies for unphysical ground states of the multireference averaged
coupled-pair functional

David B. Krisiloff, Victor B. Oyeyemi, Florian Libisch, and Emily A. Carter

Citation: The Journal of Chemical Physics 140, 024102 (2014); doi: 10.1063/1.4861035
View online: http://dx.doi.org/10.1063/1.4861035

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/140/2?ver=pdfcov
Published by the AIP Publishing

AIP - Re-register for Table of Content Alerts

Publishing

Create a profile. Sign up today! Y



http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/586982248/x01/AIP-PT/JCP_CoverPg_101613/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=David+B.+Krisiloff&option1=author
http://scitation.aip.org/search?value1=Victor+B.+Oyeyemi&option1=author
http://scitation.aip.org/search?value1=Florian+Libisch&option1=author
http://scitation.aip.org/search?value1=Emily+A.+Carter&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4861035
http://scitation.aip.org/content/aip/journal/jcp/140/2?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov

THE JOURNAL OF CHEMICAL PHYSICS 140, 024102 (2014)

® CrossMark
¢

Analysis of and remedies for unphysical ground states of the
multireference averaged coupled-pair functional

David B. Krisiloff," Victor B. Oyeyemi,? Florian Libisch,® and Emily A. Carter*
' Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009, USA
2Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey

08544-5263, USA

3 Institute for Theoretical Physics, Vienna University of Technology, Vienna, Austria

4Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
08544-5263, USA; Program in Applied and Computational Mathematics, Princeton University, Princeton,
New Jersey 08544, USA; and Andlinger Center for Energy and the Environment, Princeton University,

Princeton, New Jersey 08544-5263, USA

(Received 11 October 2013; accepted 18 December 2013; published online 8 January 2014)

A Multireference Configuration Interaction (MRCI) wavefunction includes both static and dynamic
electron correlation. MRCI’s well-known flaw, a lack of size extensivity, can be ameliorated with
the Multireference Averaged Coupled-Pair Functional (MRACPF). However, the original MRACPF
is frequently unstable, sometimes producing unphysical results. The more Multireference Averaged
Quadratic Coupled-Cluster and MRACPF2 functionals also occasionally exhibit unphysical behav-
ior. We find that these instabilities are avoided crossings with unphysical solutions to the MRACPF
equations. We present two approaches to avoid the undesirable unphysical solutions. © 2014 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4861035]

. INTRODUCTION

Multireference Configuration Interaction (MRCI) simul-
taneously includes both static and dynamic electron correla-
tion. However, unlike Coupled Cluster (CC) or Many-Body
Perturbation Theory (MBPT), MRCI is not size extensive,'
which results in an error proportional to system size. A mul-
titude of methods exist to approximately correct the MRCI
size extensivity error. A posteriori corrections’™ provide a
correction after wavefunction optimization, while a priori
methods®® provide a correction during wavefunction opti-
mization. The latter should be more accurate because they
optimize the wavefunction in the presence of the correction,
though neither is exact.’

The Multireference Averaged Coupled-Pair Functional
(MRACEPF) is an a priori size extensivity corrected form of
Multireference Singles and Doubles Configuration Interac-
tion (MRSDCI).%” MRACPF corrects MRSDCI by modified
wavefunction normalization. Unfortunately, MRACPF’s ap-
proximate size extensivity correction tends to overestimate
the correction for single excitations. This overemphasis of sin-
gle excitations can cause unphysical behavior, though to our
knowledge only two first-hand accounts exist.'”!" MRACPF
variants, Multireference Averaged Quadratic Coupled-Cluster
(MRAQCC) and MRACPF2, are more stable since they re-
duce the correction to single excitations. Nevertheless, we
have observed cases where MRACPF2 produces unstable re-
sults, mostly when using small active spaces (see the supple-
mentary material'> for examples).

MRACPF’s overestimation of single excitations does not
completely explain the unphysical solutions since MRACPF
always overestimates the singles contribution but does not al-
ways produce unphysical behavior. In this work, we show that
the chemically relevant solution of the MRACPF functional
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may not be its lowest energy solution. The overestimated sin-
gle excitation correction can unphysically lower the energy of
high lying MRACPF solutions. An avoided crossing occurs if
the high lying state is decreased in energy below the physi-
cal ground state. Under these circumstances, (i) minimization
of the MRACPF functional yields the unphysical state and
(i) the MRACPF solutions become unacceptably distorted
at the crossing. We conjecture that these avoided crossings
are the instabilities observed in the literature. We can recover
physically reasonable MRACPF solutions with root following
far away from the avoided crossing and with degenerate per-
turbation theory close to the avoided crossing. Furthermore,
we examine the previous suggestion'® to handle unphysical
MRACPF results using a larger active space in light of this
new analysis.

Il. THE MRACPF EQUATIONS

The MRSDCI wavefunction contains a series of refer-
ence configuration state functions (CSFs, spatial/spin eigen-
functions), W, and all singly and doubly excited CSFs
from each reference in W ;. Orbitals which are always dou-
bly occupied (always empty) in W, are called inactive (vir-
tual) orbitals, while active orbitals have varying occupa-
tion. The MRACPF correlation energy is calculated with the
functional:’

<“IJ|H - Eref|\p>

Ecorr[‘y] = .
> (Wl v

1)

H is the many-electron Hamiltonian and W is the MRS-
DCI wavefunction. E.s is the variationally minimal en-
ergy of a linear combination of the reference CSFs. The
g values {gk};z=1 modify the normalization in the MRSDCI

© 2014 AIP Publishing LLC
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energy functional by assigning different weights to five dif-
ferent classes of CSFs in the wavefunction. v; contains only
the reference CSFs. v, consists of those CSFs involving ex-
citations within only the active orbitals. {3 comprises CSFs
derived from single and double excitations from the inactive
orbitals to the active orbitals. {4 and 5 contain those CSFs
consisting of all single and double excitations into virtual or-
bitals, respectively. If gx = 1 V k, we recover MRSDCI. Dif-
ferent flavors of MRACPF are distinguished by different val-
ues for the set {gk}zzl. The g values define the size extensivity
correction. MRACPF defines g, go = 1 and g3, g4, g5 = 2/N
where N is the number of correlated electrons. 2/N comes
from an analysis of double excitations in a system of non-
interacting correlated electron pairs.® No similar rationaliza-
tion exists for using 2/N to correct single excitations. The use
of 2/N tends to overestimate the contribution of single exci-
tations (g3, g4).”'>'* Multiple MRACPF variants reduce this
overestimation.” MRAQCC uses

—4 1 ! 2
83,84,85—N|: _Z(N——l):| ()

These g values reduce the single excitation size extensivity
correction compared to MRACPF. MRACPF?2 uses a combi-
nation of MRAQCC and MRACPF,

. 4 ) 1 _ 2 3)
83, 84 = gs—N-

N|  2(N-1

Wennmohs and Neese later suggested a modification of
MRACPF2, MRACPF2a where g3, g4 = 4/N, which shows
the same asymptotic behavior as MRACPF2.°

To solve for the MRACPF energy, we variationally min-
imize the energy functional. Variational minimization of Eq.
(1) yields the MRACPF equations:

[H — Erefl + MW = Eor VY, “)
A = Ecorr(I — G). (5
The G matrix containing the g values (G

= Zi:l gkl ) (¥r]) is diagonal in an orthogonal or-
bital basis. 7 is the unit matrix while A is the diagonal shift.
The diagonal shift equation (Eq. (4)) is the most common
form of the MRACPF equations.'®!” However, Eq. (4)
can also be rewritten as a generalized eigenvalue problem,
removing the self-consistency in A:

[H — Ewfl ]V = EcoGW. (6)

Additionally, the equations can be directly cast into a Her-
mitian eigenvalue problem. While less useful computa-
tionally, the Hermitian form will be useful in subsequent
analysis:

[G™2(H — Eet)G (G2 W) = Econ(G2W).  (7)
Note that Gz and G~7 are well defined in an orthonormal

basis as G is a diagonal matrix of the g values, which are
always bounded by 0 < g < 1Vk. All three variations produce

J. Chem. Phys. 140, 024102 (2014)

the same MRACPF energies and can be solved using modified
forms of Davidson’s method.!"~!

The lowest energy eigenvalue of Eq. (4) is the MRACPF
ground state energy. Unlike MRSDCI, the higher energy
eigenvalues have no meaning because they are not excited
states. Calculating a MRACPF excited state requires the ex-
cited state’s reference energy in Eq. (4) instead of the ground
state. See Ref. 16 on “state specific’ MRACPF for further
discussion. The ground state energy is dominated by the refer-
ence CSFs because dynamic correlation accounts for a small
fraction of the total energy. Therefore, the reference CSFs
should contribute significantly to the ground state eigenvec-
tor. We denote such states as physical; accordingly, we denote
ground state eigenvectors with very small reference contribu-
tions as unphysical.

lll. CALCULATION DETAILS

We have probed the MRACPF instability using a simple
test case, stretching the C—O bond in methanol (see the sup-
plementary material'?> for the methanol geometry). For each
C-O distance we performed a complete active space self-
consistent field, CASSCF(2e,20) [i.e., an active space of two
electrons in two orbitals] calculation using the cc-pVDZ ba-
sis set with the C-O o and o * orbitals as the CASSCF active
space. The MRACPF (g3, g4, g5 = 2/N) correlation energy
was then calculated using the CASSCF orbitals. In the re-
gion around 3 A, a larger active space is necessary to prevent
the o and o * from rotating out of the complete active space
(CAS) space. However, using a larger CAS removes the insta-
bility (vide infra), so we restrict ourselves to CAS(2e,20) and
exclude the region around 3 A. Integral and orbital calcula-
tions were performed using the MOLCAS quantum chemistry
code.? For all calculations the two-electron integrals were de-
composed using a Cholesky Decomposition with a threshold
of 1.0 x 1078, The MRACPF calculations were performed
using TigerCI.'%2!-2* For simplicity, we did not relax the nu-
clear positions as the bond was stretched.

IV. METHANOL TEST CASE

Our discussion takes place as follows. We calculate the
bond dissociation curve of our methanol test case. The fully
dissociated molecule has an unphysical MRACPF ground
state. Examination of the dissociated molecule reveals a
higher energy state consistent with the expected physical
state. We conjecture that the instability is an avoided cross-
ing which has reordered the physical and unphysical eigen-
states. Such an avoided crossing indicates that the ground
state MRACPF solution is not always the chemically relevant
one. We demonstrate that away from the avoided crossing a
root following approach obtains the chemically relevant so-
lution. Close to the avoided crossing we use degenerate per-
turbation theory to generate a stable solution. Finally, we use
our new analysis to understand why expanding the CAS in a
MRACEPF calculation can also remove the avoided crossing.

We have calculated the bond dissociation curve for the
C-O bond in methanol. For each bond length, we solved
Eq. (6) (the generalized eigenvalue form) for the
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FIG. 1. CAS(2,2) MRACPF correlation energy (left) and norm of the resid-
ual (right) as a function of iteration number. At the seventh iteration step, the
energies appear to converge (to a physical solution, with substantial weight
on the original references) before suddenly collapsing to an unphysical lower
energy state (with minimal weight on the references). The two minima in
the norm of the residual confirm that the first and second solutions are both
eigenvalues.

lowest energy eigenvalue using Davidson’s iterative eigen-
value method. MRACPF produces a physical solution for the
equilibrium bond length, Ly = 1.42 A, and an unphysical
solution for a fully dissociated C—O bond, Lg = 10.0 A. The
physical solution (1.42 A) contains a large weight on the
reference CSFs. The total weight of the reference CSFs (sum
of the reference coefficients squared) is 0.90. The unphysical
solution (Lg = 10.0 A) contains a very small weight on the
reference CSFs of 2.0 x 10~!'* and exhibits unusual features.
The dominant configurations in the unphysical solution are
single excitations from an oxygen lone pair to one of the
active space orbitals (total weight 0.96). The contribution of
the oxygen lone pair electrons, while important, should not
outweigh the contribution of the broken C—O bond.

Examination of the unphysical solution reveals unusual
behavior: Davidson’s method first finds a higher-energy so-
lution before collapsing to the lower energy, unphysical
eigenvalue (Figure 1, left). To analyze the different solu-
tions we use the norm of the residual | [H — Ererl] Woyess
— Efor GW gyess |, which measures how close the calculated
Wayess 15 to a numerically exact eigenvector. The higher en-
ergy solution produces a very small norm of the residual
(Figure 1, right), indicating that it is an eigenvalue (but not
the ground state). Davidson’s method often produces this be-
havior when the method’s starting guess is close to an ex-
cited state eigenvector. This excited state solution contains a
large weight on the reference coefficients. We argue that this
is the chemically relevant solution, even though it is not the
lowest energy solution to the MRACPF equations. Bond dis-
sociation energies computed with the high energy, physical
solution compare reasonably well with experiment. Bond dis-
sociation energies computed with the lowest energy solution
are absurd.

These results suggest an avoided crossing or coni-
cal intersection. On one side of the crossing, the physical
state is the ground state; on the other side, the eigenval-
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FIG. 2. CAS(2,2)-MRACPF encounters an avoided crossing when dissociat-
ing the methanol C-O bond. The avoided crossing occurs because MRACPF
overestimates the size extensivity correction for single excitations, thereby
spuriously reducing the energy of the second root (dominantly a single exci-
tation). The physical solution can be recovered via a root following approach.

ues are reordered and the physical state is a higher energy
eigenvalue. To validate this hypothesis we have solved the
MRACPF equations for the lowest two eigenvalues across
the bond dissociation curve (Figure 2). We find an avoided
crossing in the MRACPF bond dissociation curve around
Lg = 2.1 A. Since the MRACPF solutions satisfy a Her-
mitian eigenvalue problem (Eq. (7)), the Wigner-von Neu-
mann non-crossing theorem” applies. Electronic states of
the same symmetry cannot cross. Any time two states would
cross an avoided crossing occurs. Furthermore, the adiabatic
eigenstates corresponding to the ground (|1ro)) and excited
(1)) state solutions of the MRACPF equations exchange
characteristics at the avoided crossing according to the evo-
lution of the diabatic states (i.e., the physical,|@pnys), and
unphysical,|@unphys), solutions). From these results, we con-
jecture that MRACPF always overestimates the contribu-
tion of single excitations’-!3!* because single excitations are
lower in energy than they should be. The MRACPF instabil-
ity occurs when this overestimation reduces the energy of a
single excitation dominated state below the physical ground
state producing an avoided crossing or conical intersection.

MRACPF solutions near the avoided crossing are clearly
perturbed (Figure 3); however, the eigenvalues do not appear
to be perturbed far away from the avoided crossing (Figure 2).
Away from the crossing we propose calculating the higher en-
ergy, physical root to obtain the MRACPF energy using root
following. A root following approach has been used in sim-
ilar situations, such as MRACPF excited states'® and other
applications.'* Root following solves for the eigenvector with
maximum overlap with the reference wavefunction instead of
the lowest energy eigenvector. If the reference wavefunction
resembles the physical ground state, root following avoids the
unphysical solution (Figure 2). However, root following does
not repair the perturbation at the crossing (Figure 3).

Near the avoided crossing we can reconstruct the
MRACPF solutions with first-order degenerate perturbation
theory. A similar approach has been taken for coupled-
cluster methods near conical intersections.”® First we make
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FIG. 3. Zoom-in on the avoided crossing of Fig. 2 when dissociating the
methanol C-O bond (distorted geometry described in the text). The MRACPF
solutions are highly perturbed near the avoided crossing. The lines in light
grey are the unperturbed solutions generated from first order degenerate per-
turbation theory (Eq. (9)). Near the avoided crossing the MRACPF solutions
(both the 1st and 2nd root) show large deviations.

the ansatz:
Ephys (LB) Vv
Vv Eunphys (LB)

where Epnys(Lp) and Eynphys(Lp) are the diabatic energies of
the physical and unphysical states, respectively, Lp is the
varying bond length, and V is the coupling matrix element
between the two diabatic solutions (V = (wgé;l;lH |1/f31i1‘:)%ys).
Solving this simple 2 x 2 system allows for accurately fit-
ting V (Figure 3) and for recovering Eypys(Lp). For the per-
fectly symmetric methanol molecule, we find an exceedingly
small crossing (approximately 10~ hartrees), since the cou-
pling matrix element V is very small. The small crossing pre-
vents a convincing demonstration of the perturbation theory

v =Ey, ®)

CAS(2e,20)-MRACPF
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approach. By breaking the symmetry (twisting the H-C—O-
H dihedral angle 10° and adding a 2e point charge 4 A from
the C atom, perpendicular to the C—O bond, see the supple-
mentary material'> for geometry and inputs), V increases to
0.35 mHa. The first-order perturbation theory ansatz correctly
reproduces both the original curves and the coupling (Fig-
ure 3). We note that more complicated molecules might fea-
ture broader and more numerous avoided crossings requiring
a more sophisticated approach, such as local diabatization.?’
Finally, we reexamine the previous solution to MRACPF
instabilities by using a larger CAS.!® Using a large active
space for MRACPF has multiple effects. First, the CASSCF
orbital shapes will improve. Second, a larger number of ref-
erences are used during the MRACPF calculation, increasing
the number of CSFs in the wavefunction. Third, the classi-
fication of orbitals change (there are more active orbitals).
The reclassification indirectly affects the calculation. The size
extensivity correction (g value) assigned to different excita-
tions will change if the orbital type changes (e.g., a virtual
orbital becomes an active orbital). This creates subtle differ-
ences in the size extensivity correction. To distinguish these
effects, we performed a full valence CASSCF(12e,110) cal-
culation to generate an improved set of orbitals. Then we ran
two MRACPF calculations, a CAS(12e,110)-MRACPF and
a CAS(2e,20)-MRACPE, both using the orbitals from the full
valence CASSCF(12e,110) calculation. In the CAS(12e,110)-
MRACPF calculation, we used the active orbitals and impor-
tant references from the CAS(12e,110) (i.e., those with CI
coefficients greater than 0.05). In the CAS(2e,20)-MRACPF,
we used the active space definition and the three references
from the CAS(2e,20) consisting of the C—O ¢ and o * orbitals.
The CAS(12e,110)-MRACPF does not produce an unphysical
ground state, but the CAS(2e,20)-MRACPF does (Figure 4).
Since both calculations used the same orbitals, the improved
orbitals are not responsible for removing the instability. The
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FIG. 4. Using a large CASSCF space in the MRACPF calculation removes the unphysical solution. The CAS(2e,20)-MRACPF calculation (left) using
CASSCEF(12e,110) orbitals demonstrates that improved orbitals do not remove the unphysical solution. The CAS(12e,110)-MRACPF (right) does not pro-
vide a (overestimated) size extensivity correction to any single excitation in the active space, thereby removing the unphysical solution.
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larger CAS space removes the instability by the aforemen-
tioned shift in the size extensivity correction. The important
oxygen internal to active orbital excitation becomes an active
to active orbital excitation in the CAS(12e,110)-MRACPF.
Active to active orbital excitations do not receive a size
extensivity correction (g, = 1). Therefore, CAS(12e,110)-
MRACPF does not incorrectly lower the excitation’s energy
and no avoided crossing occurs. This change in the size ex-
tensivity correction, and not improved orbitals, explains why
increasing the CAS size remedies MRACPF instabilities.

V. CONCLUSIONS

MRACPF instabilities have been previously associ-
ated with MRACPF’s overestimation of single excitation
contributions.!® We have shown that this overestimation re-
sults in an avoided crossing or conical intersection, which
reorders the eigenvectors. Beyond such a region on the po-
tential energy surface, MRACPF appears unstable because
the lowest eigenvector is not the physical state. Away from
the crossing we can recover the correct eigenvector with
root following. We also reevaluated the suggestion to avoid
MRACPF instabilities by using larger active spaces. A large
active space hides low lying single excitations in the active
space where they receive no correction and cannot cause in-
stabilities. We recommend root following as the default ap-
proach for MRACPF (except near the crossing), since increas-
ing the CAS scales exponentially. If MRACPF results near a
crossing are required, one can use a larger CAS to avoid the
instability problem. Alternatively, to avoid the necessity of a
large CAS for the entire potential energy surface, we showed
that one can also successfully fit to an avoided crossing using
degenerate perturbation theory.
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