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We investigate transport through bulk-disordered graphene nanoribbons and nanoconstrictions.
Employing a modular recursive Green’s function algorithm, we study devices of realistic size (up
to 100.000 nm2). By Fourier transforming the scattered wave we disentangle inter-valley scattering
between the two Dirac cones of graphene and intra-valley scattering on a single cone. We find
that different types of defects leave characteristic signatures on transport properties which we can
describe with a simplified scattering model. A quantitative comparison with recent experimental
data is performed which yields insights into the disorder concentration in realistic samples.

I. INTRODUCTION

Graphene1,2, the first true two-dimensional solid, is
a promising candidate for novel nanoelectronic devices
due to unique features of the band structure near the
Fermi energy. The double cone near the K and K ′

points of the sub-lattices in reciprocal space gives rise
to a near “pseudo-spin” degeneracy, resembling the state
space of massless Dirac four spinors. Envisioned appli-
cations range from high-mobility nanoelectronics3, spin-
qubits in graphene quantum dots4 and the creation of
“neutrino” billiards5,6. Spin coherence times in graphene
are expected to be very long due to weak spin-orbit and
hyperfine couplings7,8 making graphene quantum dots
promising candidates for future spin based quantum com-
putation4. However, confining electrons in graphene is a
challenge, mainly due to the gapless electronic structure
and the Klein tunneling paradox9–11. This difficulty has
recently been overcome by structuring 2D graphene and
quantum mechanical confinement effects have been ob-
served in nanoribbons12–14, interference devices15, single
electron transistors16,17 and in graphene quantum bil-
liards6.

While the consequences of the hexagonal symmetry
of the perfect honeycomb lattice are theoretically well
understood, realistic graphene samples feature finite-
size effects, symmetry-breaking due to point scatterers
and charged impurities. The question is posed as to
what extent these defects will influence the properties
of graphene. For large-scale devices with random impu-
rities or lattice defects analytical techniques are generally
not well suited to address this problem. To elucidate the
influence of disorder on graphene devices we will thus em-
ploy numerical techniques to simulate transport through
bulk-disordered graphene nanowires and nanoconstric-
tions. We consider both the effect of point defects (lat-
tice vacancies) that break the SU(2) symmetry of the
graphene lattice and of a smooth random background po-
tential (e.g., through substrate interactions18) and iden-
tify specific signatures these different disorder scattering
processes induce.

FIG. 1. Prototype defects to simulate (a) sublattice-
symmetry breaking scattering at single vacancies and (b)
sublattice-symmetry conserving scattering at double vacan-
cies.

II. TECHNIQUE

We employ a tight-binding (TB) approximation to cal-
culate transport properties of graphene nanodevices,

H =
∑
i,s

|φi,s〉Vi 〈φi,s| −
∑
(i,j),s

γi,j |φi,s〉 〈φj,s|+h.c. , (1)

where Vi represents the on-site energy of lattice site i
induced, e.g., by an electrostatic potential, and γi,j is
the tight-binding coupling matrix element between lat-
tice sites i and j. To accurately reproduce the band-
structure of a realistic graphene flake, we include third
nearest-neighbor (3NN) coupling19. This allows for four
free parameters, namely the site-energy ε0 and the over-
lap integrals γ1,2,3, representing the interaction with the
first, second and third nearest neighbor. The resulting
dispersion relation features a double-cone structure with
a linear dispersion relation near E = 0 (see envelope of
individual transmission modes in Fig. 2). We determine
the γi by fitting the resulting band structure to ab-initio
calculations of the bandstructure, taken from Reich et
al.19. As the transport properties of graphene are pri-
marily determined by the bandstructure near the Dirac
point, we perform the fit within an energy interval of
±2eV around the Fermi energy, giving the parameter set

ε0 = 0.026eV, γ1 = 3.145eV,

γ2 = 0.42eV, γ3 = 0.35eV.
(2)

The additional freedom of choosing γ2 and γ3 greatly
increases the accuracy of the tight-binding description,
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FIG. 2. (a) Scattering geometry investigated in this arti-
cle: an infinite graphene nanoribbon of width W , with an
incoming flux I0. Inside a finite scattering region (shaded) we
place lattice defects and a smooth disorder potential . Due to
scattering at the defects the incoming flux is partly reflected
(RI0), the remainder is transmitted (TI0, R + T = 1). (b,c)
One-dimensional bandstructure of a graphene nanoribbon for
two ribbon widths (see insets). For energies farther away from
the Dirac points of the K and K′ cones, the dispersion rela-
tion gets distorted due to trigonal warping.

in particular in energy regions away from the Dirac
point. Due to the hexagonal lattice, the double-cone
structure of the dispersion relation becomes deformed.
Near the K-point this effect commonly referred to as
trigonal warping20 results in a pronounced asymmetry
of the Dirac cone (see asymmetry of the bandstruc-
ture in Fig. 2). Note that lower-order (i.e. first-order)
tight-binding calculations fail to quantitatively account
for trigonal-warping due to the limited number of free
parameters19.

We consider a graphene nanoribbon of width W [see
Fig. 2(a)] with a disordered region of length L. The in-
coming flux I0 is partially reflected (with partial fluxRI0)
and partially transmitted (with partial flux TI0). Due to
the finite width of the nanoribbon, the transverse com-
ponent of the wavevector is quantized. As a consequence,
the cone-like dispersion relation of the extended system is
converted to a discrete set of curves [see Fig. 2(b,c)]. The
spacing ∆E in energy between the minima of consecutive
curves (e.g., between the onset of new modes) is, approx-
imately, constant and proportional to the wavenumber
difference ∆k,

∆E = h̄vF∆k, with ∆k ≈ π/W . (3)

The spacing between discrete modes (and thus quanti-
zation steps) scales inversely with W [compare (b) and
(c) in Fig. 2]. The conductance G of an ideal zigzag
graphene nanowire features quantization plateaus with a
step height of two conductance quanta, 2e2/h (neglecting
spin), due to the two degenerate contributions of the K
and K ′ cones.

III. POINT DEFECTS

The first type of disorder we consider are point de-
fects, e.g., scattering potentials with a typical length scale
of one unit cell of 2.4 Å, i.e., short-ranged compared to
the typical wavelength λ = 2π/δk, where δk is the dis-
tance (in k-space) to the K point. In the experiment,
such defects occur either due to defects in the lattice
itself (e.g., lattice vacancies) or chemisorbates that ef-
fectively remove single carbon pz orbitals as available
hopping sites for transport. Previous theoretical work
on phase-coherent quantum transport has shown that
small atomic-scale edge defects can lead to the forma-
tion of a transport gap21 and to Anderson localization22.
Quantization plateaus in the conductance of graphene
nanoribbons have been found to be very sensitive to
short-range defects that break the SU(2) symmetry of
the AB lattice23,24. In particular, single vacancies that
break the sublattice symmetry effectively wash out size
quantization plateaus, while double vacancies that con-
serve sublattice symmetry leave them approximately in-
tact (see Fig. 3). This difference results from the strong
inter-mode scattering induced by the breaking of sublat-
tice symmetry24. Since variations of the local electronic
environment of individual carbon atoms by, e.g., sub-
strate interactions, also affect the sublattice symmetry,
the experimental observation of size quantization peaks
in graphene has remained a challenge which seems to
have been overcome only just recently25. Double vacan-
cies feature an additional “internal degree of freedom for
disorder”: the angle of orientation α of the lattice vector
connecting the two vacancies relative to the ribbon axis.
In our simulations we assume a complete random orien-
tation with equal statistical weight for all three possible
orientations (i.e. 30◦, 90◦, or 150◦ with respect to the
zigzag ribbon axis). Since the angle of orientation has no
immediate influence on the persistence of the A-B sublat-
tice symmetry, we expect our results to be, to first order,
independent of α. To test this assumption, we have per-
formed calculations with only one of the three possible
double vacancy orientations. We find only a slight de-
crease in reflection R for the α = 90◦ orientation, with a
relative change ∆R/R compared to α = 30◦ or α = 150◦

(which are equivalent) of below 5%.
To visualize the effect of disorder scattering, we cal-

culate the Fourier transform of the incoming (I), re-
flected (R) or transmitted (T ) part of the wavefunction
(i = I,R, T ):

F [ψi](kx)=

∫
dy

∣∣∣∣∫ dx ψi(x, y)eikxx

∣∣∣∣2 (4)

The Fourier transform F [ψI ] of the incoming wave fea-
tures a pronounced peak at the K point in reciprocal
space as the incoming wave only contains a single ex-
cited mode (see top row in Fig. 4), located on the K cone.
In the reflected and transmitted part, a second peak at
K ′ appears due to K −K ′ scattering inside the scatter-
ing region (see bottom rows in Fig. 4). While both single



3

FIG. 3. Conductance of a graphene nanoribbon with width
W = 30nm as a function of back-gate voltage VBG. The solid
red line (blue dashed line) shows the results for 30 single (dou-
ble) vacancies in the ribbon. To express the particle energy E
as a function of back-gate voltage VBG we used E = h̄vF

√
η,

with effective capacitance η = 7.2 · 1014V−1m21.

FIG. 4. Fourier transform of scattering through a W = 15nm
wide zigzag graphene nanoribbon for (a) 10 single and (b)
10 randomly oriented double vacancies (at the same positions
as the single vacancies) . Note the broadening due to intra-
valley scattering present for single vacancy defects but absent
for double vacancies (marked by black triangles).

and double vacancies lead to inter -valley scattering, only
single vacancies cause a pronounced broadening of each
peak [compare Fig. 4(a,b)]. This clearly demonstrates
the strong intra-valley scattering due to single vacancies.

IV. SUBSTRATE INTERACTION

Apart from point defects in the graphene lattice, other
sources of disorder in graphene nanodevices are substrate
interactions or Coulomb charges. These lead to smooth
correlated disorder potentials rather than to a point-like
destruction of SU(2) symmetry. To elucidate the dif-
ferences to point scatterers, we now include a random

FIG. 5. Zero temperature conductance of a W = 30nm wide
ribbon as a function of energy for a disorder correlation length
ξ = 4nm and a disorder amplitude V0 = 100meV. Dots repre-
sent quantum mechanical calculations, averaged over 100 dis-
order realizations. The blue line represents our model based
on backscattering through evanescent modes [see Eq. (10)].
Deviations at higher energies can be attributed to deviations
from a perfectly linear bandstructure (trigonal warping).

disorder potential with

〈V (x)〉 = 0,
〈
V 2
〉

= V 2
0 (5)

and a correlation length ξ (the full-width half-maximum
of the autocorrelation function) into the on-site ener-
gies of our Hamiltonian [see Eq. (1)]. For correlation
lengths ξ < 1nm, of the order of the lattice unit cell and
small compared to the electronic wavelength ∼ 2π/δk,
we find an approximately linear increase of transmission
with energy [not shown], similar to the single-vacancy
case (Fig. 3), for which the sublattice symmetry is bro-
ken as in the case for small ξ. For larger ξ in the range
of 1nm < ξ < 10nm, we find, however, a remarkably ro-
bust pattern with pronounced dips at the thresholds for
the opening of new modes (see Fig. 5) which indicates
the observability of size quantization effects albeit not of
plateaus.

Similar dips have been reported in other numeri-
cal simulations23 of disordered graphene nanoribbons.
They have been attributed to peaks in the density of
states (DOS) ρ of the infinite nanoribbon as new quasi-
onedimensional channels open up. The scattering rate
Γ(E) from an incoming state |nk〉 to a final state |n′k′〉
as given by Fermi’s golden rule,

Γ(E) ∝
∑
n′

|〈nk|H|n′k′〉|2 ρn′(E) , (6)

should be enhanced when the density of final states is
large. This qualitative argument neither invokes spe-
cific properties of the transition matrix element nor the
prevalence of backscattering. In the following we suggest
a specific mechanism for backscattering. To elucidate
the involved scattering process, we calculate the Fourier
transform [Eq. (4)] as a function of energy (see Fig. 6).
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FIG. 6. Fourier transform F [see Eq. (4)] of the reflected wave
as a function of energy for a 30nm wide zigzag nanoribbon
(color indicates intensity of the reflected wave), containing a
random disorder with amplitude V0 = 100meV . The region
around the K and K′ cone are shown. The bandstructure
[compare Fig. 2) is overlayed as black dots. The reflection
is highest (see red color regions) near the opening of new
modes (indicated by black triangles). This feature can also
be identified in the energy integral of the reflected wave (see
top row) which has its dominant contributions near the mode
openings.

As incoming wave we choose a uniform superposition of
all incoming modes. This choice assures a non-vanishing
population amplitude of the entire discretized bandstruc-
ture near both the K and K ′ points. Accordingly, the
reflected wave shows contributions from all modes. We
observe that the major contribution to the dips in trans-
mission originates from the highest mode open at E (see
triangles and top inset in Fig. 6). This observation has
immediate implications for the mode-dependence of the
transition matrix element in (6). Key is the observa-
tion that the highest (n = N) available open mode may
become locally evanescent when the smooth fluctuations
of the disorder potential shift the band structure locally
from a propagating to an evanescent mode. In turn,
scattering into an evanescent mode strongly enhances
backscattering as the memory on the original forward
propagation direction is lost. Correspondingly, the open-
ing of a new mode at a given energy EN may not lead to
a stepwise increase in transmission, but rather to a sharp
decrease in the energy interval directly above EN , when
new scattering channels are about to become available.
To give a quantitative estimate for this effect, we consider
two contributions to transmission: a smooth background
transmission,

T0(E) ∼ E

h̄vF

W

π
, (7)

originating from all propagating modes contributes a lin-
ear increase in the conductance (∝ E). Superposed on
this smooth background is the contribution originating
from scattering of locally evanescent modes. A mode
with small (as compared to V0) longitudinal energy

Ex
n = E − h̄vFkn (8)

will become evanescent whenever the local disorder po-
tential becomes larger than its remaining propagation en-

ergy Ex
n. For simplicity, we assume that the local value

Vloc of the potential follows a uniform random distribu-
tion within the interval [−V0, V0]. The probability for a
mode n to locally become evanescent (EV), which hap-
pens for Vloc > Ex

n, is then given by

PEV,n =

{
V0−Ex

n(E)
2V0

, V0 > Ex
n

0, V0 < Ex
n

(9)

PEV,n is largest for the highest mode, n = N , and Ex
N →

0, consistent with available numerical data showing that
backscattering is largest right at the opening of a new
mode (see Fig. 5).

We replace the transition matrix element, Eq. (6),
for scattering into evanescent modes by Eq. (9),
|〈nk|H|n′k′〉|2 ∼ PEV,n with (n′k′) taken to be an evanes-
cent mode. Accordingly, Fermi’s golden rule for this
specific backscattering process via evanescent modes be-
comes

REV (E) ∝ PEV,N (E)ρV (E) . (10)

We have assumed here that reflection proceeds prefer-
entially through scattering into the highest (evanescent)
mode N . Furthermore we have replaced the DOS of the
ideal ribbon ρ (featuring infinitely sharp peaks) by ρV ,
the DOS of the scattering geometry in the presence of
the disorder potential V . As we have verified numeri-
cally, ρV can be approximated by averaging ρ over an
energy window of about 15 meV. It is remarkable that
Eq. (10) allows to quantitatively reproduce, up to a nor-
malization constant, our numerical data very well [see
blue line in Fig. 5]. In particular, REV (E) captures the
depth and shape of the transmission dips as a function of
the relative strength of the potential V0 compared to the
energy distance between adjacent modes. Notice here
the difference to the results obtained above for double
vacancies which give rise to dips just below the quantiza-
tion steps signifying scattering into “almost” open modes
(see24). In contrast, for a smooth disorder potential the
dips appear just above the quantization steps where the
disorder potential can locally “close” an already open
mode. The importance of the backscattering process via
evanescent modes underlying Eq. (10) is plausible in view
of the fact that, due to pseudospin conservation, smooth
long-range disorder is less likely to directly backscatter
forward propagating modes in graphene20. It would be
interesting to substantiate the present results by a rigor-
ous derivation including point defects and rough edges,
following similar arguments as in, e.g.,26, adapted to the
zigzag nanoribbons considered here.

V. COMPARISON TO TRANSPORT
EXPERIMENTS

We test our theoretical results by comparison with
recent experimental data on the transmission through
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FIG. 7. (a) Conductance of a graphene nanoconstriction [di-
mensions see (b)] as function of back-gate voltage for three dif-
ferent combinations of single vacancies and correlated disorder
(see insets, each curve corresponds to an average over 100 dis-
order configurations). Experimental data (black dashed line)
taken from6. (b,c) Scattering states through the graphene
junction, at energies marked by black triangles in (a). Black
triangles in (b) and (c) mark pronounced enhancements of the
wavefunctions.

graphene quantum nanoconstrictions6,25. For the theo-
retical description of large disordered graphene systems,
phase-coherent tight-binding quantum transport calcu-
lations as well as semiclassical Boltzmann transport the-
ory have been applied, for a review see27. However, re-
cent results28 suggest that standard Boltzmann-theory
might not be well suited to correctly describe the dif-
ference between short-range and long-range scatterers in
graphene. Conversely, a full quantum calculation in the
quasi-ballistic regime should be able to distinguish be-
tween short range and long-range scatterers due to a dif-
ferent dependence of conductance on carrier density (and
thus energy). We therefore aim to combine the effect of
both short-range and long-range scatterers in one ballis-
tic quantum-transport calculation. To avoid freely ad-
justable parameters, we take the disorder present from
recent experiments. We infer a typical effective den-
sity of K −K ′ scatterers from a measurement of the
movement of Coulomb blockade peaks in a transverse
magnetic field29 indicating a defect density of approxi-
mately ni = 3.5×10−4 effective single vacancy scatterers
per carbon atom for a graphene dot on silicon dioxide

substrate29. For the smoothly varying long-range disor-
der potential, we use an amplitude of V0 = 0.1eV and
a correlation length of 5nm, as obtained from recent
transport30 and STM data18 experiments for graphene
on SiO2. We include a wider contact region to incorpo-
rate reflection at the mouth of the nanoconstriction. The
potential landscape of the constriction results in wave
function enhancements inside the constriction [see solid
triangles in Fig. 7(b,c)] causing transmission minima. We
find good qualitative agreement between the measure-
ment data [black dashed line in Fig. 7(a)] and our calcu-
lations, strongly hinting at short-range K−K ′ scatterers
and disorder playing a major role in the experiment. As
suggested28, short-range scatterers (i.e. impurity density
ni) and long-range disorder (averaged potential strength
V0) change the functional form of the conductance curve
in different ways. Indeed, we can achieve quantitative
agreement for a defect density of ni = 1.7 × 10−4 [see
red line in Fig. 7(a)], i.e., for fewer short-range scatterers
than in the experiments on quantum dots29. We believe
that the lower value for ni, as compared to the value
taken from experiments on quantum dots is related to the
different circumference-to-area ratio of the nanoconstric-
tion as compared to quantum dots. Since etched edges
will contribute a sizable percentage of short-range scat-
tering to an effective ni, values for different geometries
may vary. Additionally, for our particular geometry, re-
sults depend far more strongly on short-range scatterers
than on the potential amplitude [see lines in Fig. 7(a)],
hinting that, in this case, short range scattering (at, e.g.,
rough edges) seems the dominant source of scattering.

VI. CONCLUSIONS

We have investigated transport in bulk-disordered
graphene nanoribbons and nanoconstrictions. Both
point-like lattice defects and a correlated random dis-
order were studied. We find that for small correlation
lengths (comparable to the lattice spacing), the disorder
acts similar to a lattice vacancy, destroying size quantiza-
tion. For longer correlation lengths ξ > 1nm, we observe
strong dips as clear signatures of size quantization. We
motivate the presence of these dips by a model based on
Fermi’s golden rule, yielding qualitative agreement with
quantum transport simulations. To elucidate the role of
inter-valley and intra-valley scattering we calculate the
Fourier transformation of the scattered wave. Our re-
sults are compared to experimental data on transport
through graphene nanoconstrictions.
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13 M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim,

Phys. Rev. Lett. 98, 206805 (2007).
14 Y. M. Lin, V. Perebeinos, Z. Chen, and P. Avouris, Phys.

Rev. B 78, 161409 (2008).
15 F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao,

and C. N. Lau., Science 317, 1530 (2007).
16 C. Stampfer, J. Güttinger, F. Molitor, D. Graf, T. Ihn,

and K. Ensslin, Appl. Phys. Lett. 92, 012102 (2008).

17 C. Stampfer, E. Schurtenberger, F. Molitor, J. Güttinger,
T. Ihn, and K. Ensslin, Nano Lett. 8, 2378 (2008).

18 V. Geringer, M. Liebmann, T. Echtermeyer, S. Runte,
M. Schmidt, R. Rückamp, M. Lemme, and M. Morgen-
stern, Phys. Rev. Lett. 102, 076102 (2009).

19 S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón,
Phys. Rev. B 66, 035412 (2002).

20 A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

21 E. R. Mucciolo, A. H. C. Neto, and C. H. Lewenkopf, Phys.
Rev. B 79, 075407 (2009).

22 M. Evaldsson, I. V. Zozoulenko, H. Xu, and T. Heinzel,
Phys. Rev. B 78, 161407(R) (2008).

23 S. Ihnatsenka, and G. Kirczenow, Phys. Rev. B 80,
201407R (2009).

24 F. Libisch, S. Rotter, and J. Burgdörfer, Suppression of size
quantization in graphene nanoribbons, arXiv:1102.3848,
(2011).

25 N. Tombros, A. Veligura, J. Junesch, M. H. D. Guimaraes,
I. J. V. Marun, H. T. Jonkman, and B. J. van Wees, Nature
Physics 7, 697 (2011).

26 D. A. Areshkin, D. Gunlycke, and C. T. White, Nano Lett.
7, 204 (2007).

27 S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev.
Mod. Phys. 83, 407 (2011).

28 J. W. Klos, and I. V. Zozoulenko, Phys. Rev. B 82,
081414(R) (2008).

29 F. Libisch, S. Rotter, J. Güttinger, C. Stampfer, and
J. Burgdörfer, Phys. Rev. B 81, 245411 (2010).

30 C. Stampfer, J. Güttinger, S. Hellmüller, F. Molitor,
K. Ensslin, and T. Ihn, Phys. Rev. Lett. 102, 056403
(2009).


