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1. Introduction

Graphene nanostructures [1–4] continue to attract consider-
able attention mainly due to their potential applications in high 
mobility electronics [5] and solid state quantum information 
processing [6, 7]. Intensive research has been triggered by the 
unique electronic properties of graphene [8, 9] including the 
gapless linear dispersion, and the relativistic Landau level (LL) 
spectrum [10, 11]. Graphene nanostructures also promise to 
allow exploration of phenomena related to massless Dirac fer-
mions in reduced dimensions [12–14] in the presence of con-
finement. In particular, relativistic Klein tunneling [15] can give 
rise to unconventional transmission properties of p–n junctions 
in graphene [16–18] such as the Veselago lens effect [19, 20]. 
Accordingly, an ideally sharp interface separating an electron 

and a hole cone acts for fermions as a material with negative 
index of refraction similar to recently discovered metamaterials 
for electromagnetic radiation [21–23], resulting in effects such 
as ‘cloaking’ [24]. Electrostatically patterned nanoribbons can 
thus be viewed as the starting point for graphene-based two-
dimensional electron optics with unconventional properties. 
Recent advances in fabricating high-quality graphene-hexag-
onal boron nitride (hBN) sandwich structures [25, 26] have 
overcome intrinsic difficulties in creating tunneling barriers 
and confining electrons in graphene, opening up the pathway 
towards graphene-based electron optics. Electrostatic gates on 
top of the hBN layer can now be placed much closer to the gra-
phene sheet enabling sharper p–n junctions. While exper imental 
realization of such electron ‘beam’ shaping and focusing 
devices has remained a challenge, first experimental observa-
tions have become available [27]. In this work we present theor-
etical simulations for electron transmission through a realistic 
p–n nano-scale graphene junction, and investigate its potential 
for electron-optical applications. Our focus is on the destructive 
influence of disorder on the focusing and collimation effects. 
We consider both a corrogated interface of the p–n junction 
and bulk disorder on the n- and p-side. Previous investigations 
of Klein tunneling in disordered p–n junctions [29–31] show 
that disorder improves transmission of the p–n junction. We 
show quantitatively that both Veselago lens effects and beam 
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collimators are robust in the presence of moderate interface 
roughness and weak bulk disorder, and give quantitative con-
straints for experimental realizations.

2. Klein tunneling

The linear band crossing in graphene at the K-point, the so-
called Dirac point creates a double-cone structure that closely 
mimics the dispersion relation of massless Dirac fermions 
(see figure 1(a)), described by the Dirac-like Hamiltonian,
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where px (py) denote the momentum operators and we have set 
E(kK)  =  0. The approximation (1) ignores both the length scale of 
the graphene lattice constant a  =  1.4 Å and the broken  rotational 
symmetry of the cone due to the hexagonal lattice structure, an 
effect known as trigonal warping [8]. The symmetric  electron-like 
(hole-like) dispersion relation of equation (1) above (below) the 
Dirac point allows to locally tune the Fermi energy to create 
n-doped (electron-like) or p-doped (hole-like) regions of carrier 
density by an external potential. At a finite-width potential step 
V(x) (by, e.g. a back gate) [8] (see figure 1)
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between an n-doped and a p-doped region, electrons may 
tunnel from the n-region into the p-region (see figure 1(a)). In 
the limit of a sharp interface with the transition half-width d 
small compared to the de Broglie wavelength λD, λ�d D, tun-
neling occurs with near unit probability due to the electron-
hole symmetry of H (equation (1)), a phenomenon known as 
Klein tunneling [15, 32]. Since the group velocity is reversed 
when switching from the upper to the lower cone, i.e. from 
the n to the p region, the wave originally propagating in the 
( )k k,x y  direction in the n-region is transmitted into the p region 
with wavevector ( ) ( ) ( )− ⋅ − = −k k k k1 , ,x y x y  due to flux con-
servation at the interface. The resulting scattering kinematics 
corresponds to the optical analogue of a metamaterial with 
a negative index of refraction (figure 1). Consequently, a 
diverging ray of trajectories emanating from a source point 

(S) will be focused by an ideal p–n interface onto the point F 
on the p side. Such an electron-optical lens could be created in 
graphene simply by applying a discontinuous potential step. If, 
however, the transition from n- to p- region is gradual instead 
of sudden, i.e. if d is of the order of λD, new effects appear. For 
grazing incidence with �k ky x  at the p–n interface, ky  may 
exceed the local ħ( ) ( ) /= −k x E V x vF F causing total reflec-
tion rather than transmission. Consequently, partial transmis-
sion through the p–n interface is restricted to near-normal 
incidence [28] and no distinct focal point exists. The p–n 
junction operates in this regime as filter that only transmits on 
near-normal incidence.

3. p–n junction in graphene nanoribbons

Realizing electron-optical elements such as lenses and fil-
ters suggested by the ideal massless Dirac fermion picture 
(equation (1)) in graphene structures must account for the 
discrete honeycomb lattice structure with lattice constant a 
made up by two interleaved triangular sublattices (A and B). 
It can be described in tight-binding approximation by the 
Hamiltonian [33]

∑ ∑φ φ γ φ φ= − +H V h.c.,
i

i i i
i j

i j i j
,

,
( )

 (3)

where the sum (i,j) extends over pairs of lattice sites, φj s,  

is the tight-binding orbital with spin s at lattice site j, Vi is a 
locally varying potential which includes in the present case the 
potential step (equation (2)), and γi j,  are the hopping matrix 
elements between lattice sites i and j. We omit physical spin 
in the following. In contrast to the Dirac Hamiltonian of equa-
tion (1), the electronic structure of graphene features a weakly 
broken electron-hole symmetry accounted for in the present 
simulations by including third-nearest-neighbor coupling (for 
details see [34]). Furthermore, the hexagonal symmetry of 
the graphene lattice distorts the perfectly circular Dirac cone 
at energies farther away from the Dirac point. This so-called 
trigonal warping [8, 37] is also included in our third-nearest 
neighbor description.

We explore the consequences of this symmetry breaking 
for a graphene nanoribbon that extends to infinity to the left 
and right, ( ±−∞x → ), containing a single p–n transition. 

Figure 1. (a) Graphene bandstructure near a p–n junction with transition width 2d. Circles represent cuts through the Dirac cone at constant 
energy, the arrow gives the direction of group velocity. (b) Refraction at an ideal infinitely sharp p–n junction with zero transition width 
d  =  0 results in focusing due to the different sign of the group velocity for the particle and hole. (c) Same as (b) for a finite transition width 
between n- and p-region, leading to specular reflection of rays incident with large perpendicular momentum component ky as transmission 
through the intermediate region is blocked (see text).
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Note that a flake of finite size would be unsuitable to realize 
focusing of rays as bound state effects of the finite-size flake 
would overshadow the propagation. We therefore use open 
boundary conditions within the framework of an effective 
Hamiltonian

( ) ( )= +Σ +ΣH H E E ,L Reff (4)

where the energy-dependent self-energy matrices Σ E ,L( )
( )Σ ER  describe the coupling to half-infinite waveguides to 

the left (L) and right (R) via †Σ = H G HL I L I, 
†Σ = H G HR I R I. 

Here, GL and GR represent the surface Green’s functions of 
the perfect half-infinite waveguides, and HI the interaction 
Hamiltonian between the leads and the simulated structure. 
HI, and consequently the self-energy corrections ΣL, ΣR are 
non-zero only on to the outermost carbon atoms to the left 
and right. Note that Heff is no longer Hermitian since the open 
boundary conditions introduce a finite lifetime of states.

The width W of the nanoribbon plays a key role for 
observing lens or collimator effects. Only for sufficiently large 
width λ�W D (for more quantitative estimates see below) pro-
nounced lens effects appear while for smaller W dist ortions by 
reflection at the boundary largely mask the effects. The simu-
lation of such wide ribbons (in the following we consider W 
between 120 and 300 nm) represents a numerical challenge. 
The simulation of such wide ribbons (1200 lattice sites in 
transverse direction for W  =  120 nm) includes several million 
carbon orbitals. We consider a point source (S) on the n side 
(figure 2) and calculate the propagated wavefunction at the 
position x in the ribbon, ( )→ψ xxS , via the Green function G as

( ) ( )ψ = =
−

G
H E

x x x x x: ,
1

,S Sx
eff

S (5)

where xS is the source point of current injection. We use a 
parallelized, distributed matrix inversion [35, 36] suitable for 
the efficient description of large-scale graphene nanodevices.

We first probe the Veselago lens effect predicted for mass-
less Dirac fermions in a graphene nanoribbon with an ideally 
sharp p–n junction ( →d 0, see figure 3(a)). The source point 
xS of the incoming electric current is located at the center of 
the ribbon at a distance xS  from the interface larger than the 

de Broglie wavelength λD. For a doping of E  =  V0  =  0.5 eV 
corresponding to a p–n step height of 2V0  =  1 eV, λD follows 
from the relation

λ = ≈ ⋅E hv 3.5 nm eV,D F (6)

as λ ≈ 7D  nm. Choosing the distance of S from the interface 
=x 25S  nm, we have / ⩾λx 3.5S D  for which pronounced 

focusing effects are already expected. In order to prevent the 
reduction of the visibility of focusing by boundary reflections, 
W should be large compared to xS , �W xS . Combining 
these two constraints implies λ�W D indicating that only in 
wide p–n junctions Veselago lens and Klein collimation are 
clearly visible. We observe focusing of the ray down to the 
diffraction limit with the lateral width s of the focal spot at F 
close to λ≈s2 D. We have, furthermore, numerically verified 
that distributing the source point over a small area S of size λD

2  
does not significantly change the focusing pattern. Likewise, 
a finite energy resolution ∆E, as long as ∆ �E E, does not 
substantially affect the quality of the focusing. However, even 
in this ideal limit of a sudden potential step (i.e. d  =  0 in 

Figure 2. (a) Schematic view of the p–n junction forming a Veselago lens. Source (S) and focal point (F) are marked by open circles. Rays 
correspond to a perfect negative refractive index n  =  −1. We investigate the consequences of a finite transition width 2d (b), finite interface 
roughness ∆x (c) and bulk disorder in the n- and p-regions (d).

Figure 3. (a) Propagated wave ( )ψ xx
2

S  of a perfect p–n junction in 
graphene (d  =  0, W  =  120 nm) a potential step of V0  =  1 eV in the 
absence of disorder. (b) Cut through (a) along the black line. The 
transverse width of the focused beam is λ≈s2 D.
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equation (2)) small deviations from the Dirac picture such as 
trigonal warping [8, 37] become visible. Consequently, when 
changing from the electron to the hole cone, the conservation 
of ky is not perfect, leading to a slight asymmetry in the dis-
tance of focal point F and source S from the p–n junction.

4. Measures for focusing and collimation

In order to quantitatively characterize in the following 
focusing and collimation properties in realistic p–n graphene 
junctions we introduce as a measure for finding the electron 
inside the spot width (−s, s) of an ideal Veselago lens with 

λ=s2 D (see figure 3(b)) the probability

( )
( )

( )∫ ψ=
−

P x s
A x

x y y;
1

, d ,
s

s
2 (7)

where the normalization constant A(x) is determined by  
P(x; s  =  W/2)  =  1. We furthermore introduce the contrast C,

( )( ) ( ( ) ) ( ( ) )ψ ψ= | | − | |
′

C x
A

x x
1

max min2 2 (8)

characterizing the visibility of focusing regardless of its loca-
tion within the p domain. Equation (7) remains applicable also 
in cases where the focal point is displaced relative to the posi-
tion F predicted for the ideal Veselago lens. The normalization 
′A  in equation (8) will be kept fixed at C(x)  =  1 for the ideally 

sharp p–n junction to allow a direct comparison between the 
contrast for different realizations of p–n junctions.

5. Finite transition width

As a first step towards a realistic scenario for a p–n junction we 
consider a finite transition (half)width d of an otherwise ideal 
junction. We observe a gradual change from the Veselago-
lens type focusing (for 2d  =  0.5 nm λ� D, figure 4(a)) to the 
low-divergence beam filter (for 2d  =  15 nm  >λD, figure 4(d)) 
predicted by Cheianov et al [28]. This beam shaping and col-
limation is not an immediate consequence of the negative 
index of refraction itself but of the filtering out of large-angle 
momentum components incident on the junction, i.e. filtering 
due to imperfect Klein tunneling at larger angles of incidence 
[18]. For the linear potential step (equation (2)), the filtering 
out of larger angles of incidence α (α = 0 denotes perpend-
icular incidence) can be analytically estimated in terms of an 
effective tunnel probability of [28]

( ) [ / ]α π λ α= −p dexp 2 sin .2
D

2 (9)

The range of transmitted angles is thus controlled by the ratio 
/λd D. For small α, equation (9) will yield probabilities close 

to one even for large d (indeed, at α = 0, any finite d will 
lead to perfect transmission). For larger angles of incidence, 
however, only p–n junctions with small transition widths will 
allow for transmission, leading to the beam-like pattern we 
observe in our numerical simulations. While the beam formed 
by such a Klein collimator is well focused with width λ≈s2 D, 
its total amplitude is, of course, reduced with increasing trans-
ition width d in the regime λ�d D, leading to a reduction of 

the absolute contrast (see figure 4(e)). Spatially extended p–n 
junctions thus allow for the formation of a tightly focused 
electron beam with interesting applications such as collision-
free ballistic transport of the confined beam due to the sup-
pression of interactions with (rough) edges of nanoribbons.

The potential height V0 provides a second tuning parameter 
for the p–n junction. For optimal Klein tunneling the Fermi 
level EF is tuned by doping to coincide with V0 (figure 1). For 
smaller V0, the increased electron wavelength decreases the 
resolution of the interference structures (compare figures 5(a)–
(d)). Moreover, for very small V0 and correspondingly large λD 
the focal spot width increases resulting in a decrease of P and 
C (figure 5(e)). On the other hand for V0 too large (⩾ 0.7 eV),  
effects of the nonlinear band bending far away from the Dirac 
point decrease the focusing efficiency and the contrast (figure 
5(e)). Simultaneously decreasing the transition width d, V0 and 
EF, while keeping the ratio /λ dD  constant, improves transmis-
sion in disorder-free junctions [16]: at small energies, and thus 
large λD, a soft junction (featuring a transition length of the order 
of λD, yet large compared to the lattice constant) transmits better 
than a sharp one. However, experimental realizations require 
robustness of focusing against finite long-range disorder (as 
induced, e.g. by the substrate) providing a lower bound for V0.

6. Disorder and interface roughness

Creating a potential step with a strong gradient in the elec-
tronic potential that varies by a fraction of an eV over a few 
nanometers for a p–n junction in a realistic device still poses 
a considerable challenge. This requires fabrication techniques 
beyond simple back-gate voltages, e.g. etching of contacts 
very close to the graphene membrane, or top-gate approaches 
[14]. Such approaches, however, invariably introduce some 
level of roughness, i.e. deviation from a straight interface 
perpendicular to the ribbon axis (see figure  2). Simulation 
of a realistic scenario for the realization of such nanoscale 
electron-optical structures requires the inclusion of corruga-
tion of the p–n interface. Such interface roughness ∆x limits 
focusing and contrast unless it is negligibly small compared to 
the de Broglie wavelength λD. The focusing parameter P and 
the contrast C remain high for � λ∆x D but rapidly decrease 
for larger ∆x (figure 6(a)). Clearly, the effect of interface 
roughness could be reduced by increasing λD. The latter can 
be achieved by reducing the energy separation V0 between 
the n- and p- regions. However, as the size of the focal spot 
also scales with λD, suppression of interface roughness would 
come at the expense of a reduced contrast.

A second limitation for a realistic graphene nanoribbon 
is bulk disorder, in particular due to interaction with the 
 substrate. Disorder limits electron mobility and can cause a 
transport gap in quantum dot measurements [4]. To investigate 
the influence of such a disorder on electron-optical properties, 
we include a bulk disorder potential in the n- and p-regions 
(see figure  2(d)). We use a correlated disorder potential 

( )V xD , with an amplitude VD  and an autocorrelation length ξ 
in both the n- and p-regions. A well-defined junction requires 
of course that local potential variations are smaller than the 
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potential step of the junction, �V VD 0. As expected, the effect 
of dis order is strongest when the correlation length ξ matches 
the de Broglie wavelength, ξ λ≈ D, while it is reduced for both 
longer and shorter correlation lengths. The latter applies only 
as long as the correlation length is still large compared to the 
lattice spacing, ξ λ�a D⩽  . For very short correlation lengths 
of the order of the lattice spacing characteristic for  lattice 
point defects, strong inter-valley scattering, a peculiarity of 
graphene, can severely impede well-defined electron-optical 
properties. It should be noted that Klein tunneling itself is not 
directly affected by bulk disorder but the lensing effect is. As 
a result, we observe several local maxima rather than a single 
focal point (see figure 6(b)). Accordingly, the probability P of 
finding the electron in the focal region is significantly reduced 
with increasing potential strength ⟨ ⟩VD , while the contrast C 
decreases only slowly (see figure 6(b)). Up to a disorder poten-
tial of the order of ⟨ ⟩≈V 0.1D  eV corre sponding to

⟨ ⟩/ �V V 0.2,D 0 (10)

the contrast is still above the 50% level. At the same time, the 
height of the potential step should be smaller than the char-
acteristic energies associated with the interface corrugation,

ħ ħ= =∆ ∆E v k E v kandx x d dF F (11)

with /π= ∆∆k x2x  and /π=k d2d . Combining the constraints 
(10) and (11) provides a criterion for the admissible potential 
height V0,

π
+∆

� �V V v
d x

5 2
1

D 0 Fħ〈 〉 (12)

for which focusing and collimation should be observable. We 
emphasize that these bounds apply to fully phase-coherent 
single-electron transport.

In the present simulation we do not explicitly treat sublat-
tice-breaking disorder σ∝σV z, where the Pauli matrix σz acts 

Figure 4. (a)–(d) Propagated wave ( )ψ xx
2

S  near a p–n junction with width W  =  120 nm featuring different transition region widths 2d (see 
insets, equation (2)) and a step height of V0  =  500 meV. The source point xS is 25 nm away from the onset of the p–n junction. (e) Contrast 
C (equation (8)) and focusing probability P (equation (7)) of an ideal p–n junction as a function of transition width for different distances 
xS  from the junction (see insets). (a) 2d  =  05 nm. (b) 2d  =  3 nm (c) 2d  =  5 nm (d) 2d  =  15 nm.

Figure 5. (a)–(d) Propagated wave ( )ψ xx
2

S  of a p–n junction of width W  =  120 nm for different potential step heights V0 (see insets, 
equation (2)) at fixed transition width of 2d  =  5 nm. Source point at a distance of 25 nm away from the p–n junction. (e) Contrast C 
(equation (8)) and focusing probability P (equation (7)) of the p–n junction as a function of step height V0. (a) V0  =  100 meV.  
(b) V0  =  200 meV (c) V0  =  300 meV (d) V0  =  400 meV.

J. Phys.: Condens. Matter 29 (2017) 114002
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on the sublattice degree of freedom. The potential σV  implies 
different local potentials on the two trigonal sublattices of 
graphene. Such short-range fluctuations are induced, e.g. by 
substrates such as hexagonal boron nitride. Depending on the 
relative alignment of the graphene layer with respect to the 
substrate, the two sublattices of graphene positioned, e.g. over 
a boron and a nitrogen atom may see quite different potentials 
[38]. The resulting σV  opens a band gap at the Dirac point. We 
have verified numerically that potentials of the order of 10% 
of the step height V0 do not strongly affect the focusing prop-
erties of the p–n junction.

Testing our predictions (equation (12)) for smaller dis-
order strength ⟨ ⟩V  and step heights V0 (and thus larger wave 
lengths) requires larger system sizes. We simulate a junction 
of width W  =  300 nm (i.e. about a factor three wider than 
the p–n junctions discussed above). For these simulations, 
we solve the Dirac equation (1) in the continuum limit rather 

than the TB Schrödinger equation  for numerical simplicity 
thereby neglecting effects due to the discrete lattice structure. 
As expected, the small assymetry of the transmitted wave due 
to trigonal warping disappears entirely. Consequently, these 
results can give only an upper bound for the quality of focusing 
for realistic graphene. We find the same qualitative trends as 
before: the focusing probability P decreases with increasing 
diso rder strength (figure 7). Klein collimation for larger d is more 
robust to disorder (compare bottom and top row of figure 7). 
Efficient focusing at larger disorder amplitudes requires larger 
step heights. While larger disorder even increases the overall 
transmission of the p–n junction, in line with previous results 
[31], the focusing decreases rapidly (see figure 8).

A comparison to recent experiment further corroborates 
our analysis. Lee at al. realized a transition width of ≈d 12 
nm using a top gate made of few-layer hexagonal boron 
nitride [27]. They consider a series of two junctions (i.e. a 

Figure 7. Focusing probability P (equation (7)) as a function of averaged disorder strength ⟨ ⟩V  for three different step heights V0 of the p–n 
junction (see insets), evaluated for a junction with narrow transition region (d  =  0.2 nm, top row) and a wide transition region (d  =  7 nm, 
bottom row). P is evaluated at distance x  =  50 nm (left column) and x  =  90 nm (right column) from the p–n junction. Width W of the ribbon 
is 300 nm, calculation based on the Dirac approximation of equation (1).

Figure 6. (a) Propagated wave ( )ψ xx
2

S  near a p–n junction of step height V0  =  500 meV, width W  =  120 nm with a rough interface  
∆ =x 5 nm. The inset shows the evolution of focusing probability P (solid line, see equation (7)) and the contrast C (dashed line, see 
equation (8)) as a function of interface roughness ∆x. (b) Same as (a) for a p–n junction with bulk disorder potential ( )V xD , ⟨ ⟩ =V 0.2 eV. 
The inset shows P and C as a function of mean disorder potential amplitude V .

J. Phys.: Condens. Matter 29 (2017) 114002
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p–n–p and n–p–n transition), and find a small but discern-
able enhancement of transmission of the order of 5% due to 
the Veselago lens effect. Estimating the step height in this 
experimental device with a gate coupling η≈ ×7.2 1010  
cm−2 V−1 yields for a gate voltage VG of 10 V a doping level of 

 η= ≈ × −n V 2.3 10 cmG
12 2, or a Fermi level of [27]

ħ  π= ≈E v n 100 meV,F F (13)

i.e. the value used in our calculations for figure  8. The 
experiment estimates disorder by a mean free path Λmfp of 

 µΛ ≈ 1.7mfp m. To compare to the disorder scale of our calcul-
ations we determine numerically a mean free path associated 
with our randomly correlated disorder. We find  µΛ ≈ 1.7mfp

m for a disorder strength of ⟨ ⟩ =V 20 meV using a fit to aver-
aged transmission coefficients [39, 40]. Our calculations yield 
a P value of  0.45 for this disorder strength (see lowest curve 
in figures  7(a and c)), suggesting an upper bound for the 
focusing probability of two junctions of 20% in fair agree-
ment with the experimental findings of a 5% enhancement 
[27]. Testing our relation for the energy scales equation (12)

π≈ ≈
∆ +

≈� �V V v
x d

5 100 meV 100 meV 2
1

250 meV,D 0 Fħ〈 〉

 (14)
confirms that the experiment is within our suggested bounds for 
observing the Veselago lens effect. Indeed, the tight constraint 

⩽ ⟨ / ⟩V V 5D 0  might explain the comparatively small enhance-
ment of the transmitted current found in the  experiment. We 
thus conclude that the quantitative bounds we provide are a 
good indicator for the suitability of an exper imental setup to 
exploit electron focusing by p–n junctions.

7. Conclusions

We have investigated electron-optical focusing and filtering 
in realistic graphene devices generalizing the notion of a 
Veselago lens based on Klein tunneling of massless Dirac 
fermions. We find that the focusing effect is robust against 
moderate disorder and give quantitative upper bounds for the 
distortion by bulk disorder and interface roughness. The major 

challenge in experimental realization remains achieving sharp 
potential steps necessary for Klein tunneling. Comparing 
junctions of different step height, we find that lower step 
heights show better focusing for zero bulk disorder, yet suffer 
more strongly from finite disorder. Comparing our prediction 
with recent experiment indicates an optimized setting when 
the junction height is about an order of magnitude larger than 
the average bulk disorder.
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