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Graphene quantum dot states near defects
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Smoothly confined graphene quantum dots (GQDs) localize Dirac electrons with conserved spin and valley
degrees of freedom. Recent experimental realization of such structures using a combination of magnetic fields
and a scanning tunneling microscope tip showcased their potential in locally probing and adjusting the valley
degree of freedom. The present work models the influence of lattice defects on the level structure of GQDs. We
study both the adiabatic level spacing “landscape”—orbital splitting and valley splitting—as well as transition
dynamics between GQD states. The system is modeled using a tight-binding approach with on-site and hopping
parameters in the vicinity of the defect region extracted from density functional theory via Wannier orbitals while
time propagation is done using Magnus operators. Different defect types, such as double vacancy, Stone-Wales,
flower, and Si substitution, are considered. We predict tunable valley splittings of the order of 2–20 meV. The
level structure can thus be tailored at will by engineering appropriate defect geometries.
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I. INTRODUCTION

Unique electronic properties and long spin coherence times
make graphene [1–3] a promising host material for quantum
dots which might one day replace GaAs as the state-of-
the-art material for both spintronic [4–7] and valleytronic
applications [8–10]. Unfortunately, patterning graphene to
form quantum dots yields devices dominated by edge effects
[11,12]. The gapless spectrum of graphene makes electrostatic
confinement challenging. Recent developments towards so
called edge-free quantum dots in single-layer graphene by a
combination of electric and magnetic fields [13–19] pave the
way for graphene quantum dots (GQDs) with a level spectrum
free of edge effects.

GQDs are appealing host materials for spin qubits [5,7].
These are unfeasible without controlled breaking of the valley
degree of freedom of graphene. The hexagonal symmetry of
the honeycomb lattice results in two inequivalent electronic
states in graphene, so-called valleys, which we label with “+”
and “−.” Quantum states in pristine graphene carry this valley
index τ = ± as an additional quantum number.

In the present manuscript, we simulate the spectrum of
electrostatically defined GQDs in the presence of lattice de-
fects. In particular, we focus on the controlled breaking of
the valley symmetry by defects close to the GQD. Tremen-
dous improvement in the synthesis of graphene nanostructures
[20,21] has enabled very clean samples with high mobility
and low defect density. Instead of many randomly distributed
defects hampering device performance, one can envision ex-
ploiting specific lattice defects in graphene which actively
tune the level spectrum of edgeless GQDs in their close
vicinity. The possibility to purposefully create a certain defect
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density via high-energy particle beam bombardment [22–24]
in graphene may ultimately develop towards systematically
placing certain defects in a controlled manner.

One setup to induce smooth electrostatic confinement in
single layer graphene involves combining an out-of-plane
magnetic field (to ensure Landau quantization) with an elec-
tric field. The Landau level energies E (n)

L for pristine graphene
in a perpendicular magnetic field B are given by [2]

E (n)
L = vF · sgn(n)

√
2h̄e

c
|B||n| with n ∈ Z, (1)

with Fermi velocity vF . The energy gaps between Landau
levels (�E0 = E (1)

L − E (0)
L ≈ 80 meV for B = 7 T) allow

electrostatic confinement given a suitable electrostatic poten-
tial. This potential can be induced by a scanning tunneling
microscopy (STM) tip hovering over the graphene flake
[13,14] (see Fig. 1). We assume that substrate effects are small
compared to the tip-induced confinement, as readily achieved
using an atomically flat substrate such as hexagonal boron
nitride (hBN). The STM tip locally shifts the energy rela-
tive to the Landau levels. The resulting smooth confinement
avoids any physical edges and hosts fourfold near-degenerate
spin-valley quadruplets [13]. The energy spacing between the
quadruplets is determined by the electrostatic environment
created by the STM tip. In practice [13], one finds values of
the order of 10 meV, about one order of magnitude smaller
than �E0. The homogeneous magnetic field used for inducing
Landau quantization leads to a small spin splitting on the order
of 800 μeV (at B = 7 T) between the two spin doublets of the
quadruplet. The GQDs defined by a mobile STM tip can easily
be moved with respect to the graphene lattice, as opposed to
GQDs created by patterning of the lattice. Creating the GQD
with an STM tip also provides an elegant way to measure the
energies of individual quantum dot states via charging events
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FIG. 1. (a) Schematic setup of STM tip and graphene flake
on an hBN substrate. (b) Achieving confinement within the first
Landau gap.

[13]. Since the spectrum of the quantum dot reacts sensitively
to the local electronic environment it can be used as a sensitive
probe of the local electronic structure [14]. Exchanging the
STM tip for an array of electric gates could also provide
motion on relevant time scales for dynamic switching between
dot states.

This paper is organized as follows: We first outline our
approach for accurately modeling quantum dot states in the
presence of defects, and compare different levels of approxi-
mation. We then calculate the effect of several lattice defects
(double vacancy, Si substitution, and flower defect) on the
quantum dot states, with a particular focus on valley sym-
metry breaking induced by the defects. We identify several
avoided crossings within the valley subspace, suggesting that
the valley splitting changes sign when the dot passes through
the defect. We finally show how such crossings can be ex-
ploited to dynamically obtain a desired state by transitioning
the crossing either adiabatically or diabatically.

II. MODEL

We model a finite-sized, rectangular graphene flake with
an area of approximately 120×100 nm2 using a tight-binding
Hamiltonian

Ĥ (E ) =
∑

i

siĉ
†
i ĉi +

∑
〈i, j〉

ti j ĉ
†
i ĉ j + �(E ), (2)

with ĉ†
i (ĉi ) representing the creation (annihilation) operators

of a quasiparticle at site i with position ri, si the on-site
(diagonal) matrix elements, and ti j the hopping amplitudes
between sites i and j. The sum over j runs over the nearest-
neighbor sites included: We use up to 10th nearest-neighbor
hopping with values taken from density functional theory
by Wannierization [25]. An energy-dependent self-energy
[26,27] �(E ) implements open boundary conditions on all
four sides [Fig. 2(a)]. This avoids edge effects and also filters
out delocalized states [11]. We do not include physical spin.
A perpendicular, homogeneous magnetic field (7 T) enters the
hopping matrix elements ti j via a Peierl’s phase. For now,
we neglect the influence of the hBN substrate, except for
its effect on the electrostatic environment. We will explicitly
consider the influence of (substrate-induced) disorder below.
To model the electrostatic environment due to an STM tip at a
voltage V0, we numerically solve a classical Poisson equation
[13] with the following parameters: rtip = 120 nm, εhBN = 4,
εgr = 2.5, and a thickness of the hBN substrate dhBN ≈ 30 nm.

FIG. 2. (a) Schematic depiction of the model graphene flake
with red marker indicating the embedding position for defects (flake
center) and the green circle representing the GQD (possibly shifted
relative to the defect by RT = (XT ,YT ). (b) Sequence of eigenen-
ergies (real part) around the Dirac point for different values of tip
voltage (and thus “depth” of the GQD potential) filtered for localized
(low imaginary parts �i,τ , blue dots) and delocalized states (high
imaginary parts �i,τ , gray dots). Landau level energies (horizontal
dot-dashed green lines) as well as the Fermi level for defining occu-
pied GQD states are indicated (red line). (c) Energy level diagram
for the lowest two orbitals of a GQD with orbital splitting �O

1 , valley
splitting �τ

1 , and spin splitting �σ indicated.

Following Ref. [28] we fit an analytic function to arrive at a
rotationally symmetric potential

φtip(r) =
{−V0 · cos5

(
π
2α

|r|), |r| < α,

0, |r| � α,
(3)

with

α = 2309|V0|

√√√√1 +
√

0.4

0.005 + |V0| , (4)

which can be easily implemented into our tight binding
calculations (see Supplemental Material of [13] for details
regarding the tip potential calculation). At typical tip voltages
we obtain a potential well of approximately 20 nm in diameter.
We then solve the eigenproblem[

Ĥ (EF) +
∑

l

φtip(rl − RT )ĉ†
l ĉl

]∣∣�τ
j

〉 = ε j,τ

∣∣�τ
j

〉
(5)

for eigenvalues within an energy range of interest via Krylov
methods [29], where j counts the orbital energy levels and
τ = +,− refers to the valley index of graphene. Here, EF is
the Fermi level of the surrounding graphene, which is tuned
into the bulk Landau gap to optimize confinement. We model
level spacings obtained in experiment, where one scans the
tip potential and detects charging events whenever a GQD
level is occupied [13]. We can solve Eq. (5) for a given V0

to determine eigenenergies ε j,τ (V0) [Fig. 2(b)]. Since the self-
energy contained within the Hamiltonian breaks time-reversal
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symmetry (it includes only outgoing lead modes, not incom-
ing ones), Eq. (5) yields complex eigenvalues ε j,τ = ε j,τ −
i� j,τ . The imaginary part � j,τ describes the coupling to the
environment—we can thus easily distinguish between states
localized within the GQD [blue lines in Fig. 2(b)] and delocal-
ized Bloch states [gray lines in Fig. 2(b)] (� < 190 μeV gives
a reasonable threshold). We extract the values of V0 at which
eigenvalues corresponding to localized states cross the Fermi
level EF [red crosses in Fig. 2(b)]. Recalculating for different
displacements RT = (XT ,YT ) of the tip potential allows us to
map out a “level spacing landscape,”

V j,τ
0 (RT , EF ), ε j,τ

(
RT ;V j,τ

0

) = EF. (6)

We simplify the eigenvalue problem [Eq. (5)] by evaluating
the now energy-dependent Hamiltonian (due to the energy-
dependent self-energy for the open boundaries) at EF instead
of ε j,τ to avoid solving an otherwise quite cumbersome non-
linear eigenvalue problem. This approximation becomes exact
in the limit ε j,τ → EF, which is exactly the eigenenergy of
each dot-state solution in Eq. (6) [red crosses in Fig. 2(b)].

For a pristine graphene lattice, level ( j, τ ) crosses the
Fermi level at constant tip potential [V0(RT ) = V j,τ

0 ± 1 μeV ]
independent of tip displacement. We conclude that there are
no sizable finite-size or edge effects due to the boundary of
our simulation cell.

Analytical solutions for free Dirac fermions in a magnetic
field are the valley pairs [2]

|ψ+
j 〉 =

(|φ| j|−1〉
|φ| j|〉

)
, |ψ−

j 〉 =
( |φ| j|〉

|φ| j|−1〉
)

, (7)

where the |φ j〉 are eigenstates of a harmonic oscillator that
can be expressed in Hermite polynomials. The orbital index
j differs by one on the two sublattice components and, when
j ≡ 0, the other component “| j| − 1” vanishes.

In the case of an additional confinement potential which
(approximately) conserves valley symmetry, the structure of
the solution for the two valleys suggested by Eq. (7) remains
intact,

|ψ+
j 〉 =

(|ϕa〉
|ϕb〉

)
, |ψ−

j 〉 =
(|ϕb〉

|ϕa〉
)

, (8)

with the ϕa,b now determined numerically by the exact shape
of the confinement potential. The radially symmetric tip po-
tential in Eq. (5) suggests a description via radial (nr ∈ N0)
and angular (m ∈ Z) quantum numbers for the modified
GQD states. A possible adiabatic mapping from LL index
N to allowed combinations of nr and m can be formulated
[30,31]. The simulated eigenstates (Fig. 3), indeed, resemble
the structure suggested by the analytical solution in Eq. (7)
perfectly. We obtain doubly valley degenerate GQD states
(�τ ≈ 0 meV), separated by orbital splittings �O ≈ 20 meV.
Additionally considering physical spin would yield a spin
splitting �σ = 800 μeV at 7 T. Clean numerical separation
of the degenerate valley pairs can only be achieved via a
small mass term [VAB = (+1,−1) meV] with opposite sign
on the two sublattices. In subsequent calculations that include
lattice defects we use these states as reference valley states.
We project the dot wave functions on the corresponding 〈ψ+

i |

FIG. 3. Probability density of the first six (one valley pair per
row) GQD eigenstates as well as their sublattice projected density
(A/B insets) for the pristine system.

as a measure for the residual valley polarization

Pτ = ∣∣ 〈ψ+
i

∣∣�τ
i

〉 ∣∣2
, (9)

where |�〉 represents a GQD state in the presence of a defect,
while |ψ〉 is the corresponding state of the pristine system
with the same displacement of the tip.

How do lattice defects modify the level spectrum of the
GQD? We include defects at the center of our flake by suitably
tuning the on-site and hopping elements in Eq. (2). Then, we
study the change of the level spectrum, Eq. (5), as a function
of quantum dot displacement RT [see Fig. 2(a)].

Since the quantum dot eigenstates sensitively probe the
local electronic environment, care must be taken to correctly
model the various defects. We consider, in order of increas-
ing accuracy and numerical cost, different approaches for the
simple case of a lattice double vacancy [32] as follows.

(a) The poor man’s description of a vacancy simply re-
moves the corresponding orbitals entirely, while everything
else remains unchanged.

More elaborate approaches are based on some level of
density functional theory (DFT). We use the VASP software
package for DFT calculations [33–36] and refer to our earlier
work for technical details [25].

(b) Based solely on the relaxed defect geometry obtained
from DFT (or, potentially, from a molecular dynamics simula-
tion or STEM/STM measurements), one can parametrize the
defect based on a simple Slater-Koster model [37,38].

Finally, one can extract tight-binding parameters directly
from the DFT result, without the need for empirical models.
We use Wannier90 [39–41] and project only on the carbon pz

orbitals, since those dominate the electronic structure around
the Fermi energy, as follows.

(c) We extract the parametrization of the entire defect from
a 6×6 DFT supercell calculation.
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FIG. 4. Level spacing landscape for different embedding meth-
ods (see description in the “Model” section) of the double vacancy
defect for GQD displacement in x direction.

In the full defect calculation (c) the tight-binding pa-
rameters obtained by Wannier90 reproduce the DFT band
structures of the fully relaxed defect geometry, with a maximal
deviation of 4 meV in an energy range around the Dirac point
(±1.25 eV). While numerically quite costly, this approach
should be the most accurate one, and can be used to bench-
mark the two more approximative methods. Unfortunately,
both (a) and (b) heavily underestimate the induced valley split-
tings compared to the fully Wannierized embedding (Fig. 4).
Since the qualitative agreement of method (b) [Slater-Koster,
Fig. 4(b)] also seems lacking, we conclude that using such a
general parametrization is not accurate enough for the present
problem (agreeing results for other defects not shown). In
contrast, the very simple method (a), inherently only usable
for vacancies, provides an—admittedly rough—qualitative es-
timate of induced valley splittings.

The asymmetry of the induced valley splitting (relative to
the gray lines in Fig. 4 representing the pristine system) at
displacement XT = 0 is only seen when using a full DFT
supercell calculation. The resulting level spectrum landscape
of a defect would therefore appear to be an intricate function
of all hopping terms. None of the low level methods provide
a reasonable alternative to a full Wannierization of the defect
supercell [method (c)]. We therefore employ method (c) in all
subsequent calculations.

III. TUNABLE VALLEY SPLITTING

We investigate the influence of various defects, such as
double vacancy, a silicon substitution, and a flower defect
on the potential landscape V i,τ

0 (RT ). These defects induce
a sizable valley splitting �τ as well as a series of avoided
crossings in the valley subspace. Our findings prove robust
even in the presence of moderate, long-range correlated disor-
der (representing influence of the hBN substrate), as outlined
below. These findings suggest that a suitable arrangement of
defects on the lattice can be used to engineer a desired series
of avoided crossings. A graphene flake with correctly placed
defects could thus serve as a scaffold for quantum-mechanical
few-level systems with tailored interactions.

a. Double vacancy. A double vacancy strongly perturbs
the valley symmetry of a GQD (see Fig. 5) resulting in
a sizable, asymmetric valley splitting of the lowest orbital

FIG. 5. Displacement dependent level spectrum for the lowest
GQD states (first three valley pairs) in the presence of a double va-
cancy defect at the indicated position (red marker in flake schematic)
for GQD displacement in (a) x direction and (b) y direction. The color
scale represents the squared overlap between defect and pristine
wave functions Pτ as defined in Eq. (9).

(�τ
1≈ 13 meV) when the tip is located at the defect, RT =

(0, 0). This splitting decreases for the second orbital to about
8 meV and vanishes completely for the third orbital due to
the decreasing probability density of the wave functions at
the GQD center (see Fig. 3). At RT = (0, 0) the valley pairs
split into an energetically favorable, localized state, and a
delocalized state at an energy similar to the pristine system.
In a double vacancy, with the sublattice corresponding to the
“upper” missing atom labeled as “A,” the wave function in the
upper semicircle predominantly localizes on the “B” sublat-
tice, and vice versa for the lower hemisphere (see Fig. 6). The
energy of the state is thus lowered by avoiding the intersublat-
tice hopping to the missing atom.

The dependence of the induced valley splitting �τ
i on the

distance to the defect correlates with the radial density dis-
tribution of the corresponding pristine wave functions |ψτ

i 〉:
We plot Pτ [see Eq. (9)] as color scale in the level-spacing
landscapes. States with Pτ = 0 (red) or 1 (blue) have per-
fect overlap with the pristine valley solutions of Eq. (8),
whereas Pτ = 0.5 (green) indicates a balanced superposition
within the pristine valley basis (“valley mixing”). The splitting
�τ and valley mixing gradually decrease and are lost when
there is no more density at the defect site. The lowest—and
thus narrowest—orbitals regain the characteristic structure of
Eq. (8) at a distance of about 20 nm (see red/blue color scaling
associated with Pτ = 0, 1 in Fig. 5).

While the magnitude of the induced valley splitting �τ is
independent of the direction of displacement of the GQD, the
respective states differ substantially [compare Figs. 5(a) and
5(b)]. For displacements perpendicular to the axis through the
two removed carbon atoms of the double vacancy (x direction
in our coordinate system) we find no well-defined valley po-
larization Pτ , [Eq. (9), green lines in Fig. 5(a)] indicating a
maximal mixing of the valley states as soon as the defect is
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FIG. 6. Probability density in the presence of a double vacancy
for RT = (0, 0). The panels show the first six (one valley pair per
row) GQD eigenstates as well as their sublattice projected density
(A/B insets).

within the typical radius of the respective GQD orbital. At
very small distances (XT < 5 nm) this mixing is no longer
restricted to a specific valley subspace as P+ + P− no longer
adds up to one. Displacing the GQD parallel to the double
vacancy (y direction) reveals a fundamentally different evolu-
tion of Pτ including several avoided crossings connected by
regions where Pτ ≈ 0 or 1 [Fig. 5(b)]. Displacing the tip in
y direction induces an asymmetry with respect to the vacant
atom positions, which leads to a sequence of avoided cross-
ings as the maxima of probability density pass over the defect
position. This asymmetry is also reflected in the sublattice
projected densities [Fig. 6(top left)] and gives an intuitive
understanding of the valley inversion that occurs when the tip
is displaced in ±y direction.

b. Flower defect. The flower defect, a 30◦ rotation of a
region containing seven carbon rings [42,43] [see inset in
Fig. 7(a)], induces valley splittings of similar magnitude as the
double vacancy at RT = (0, 0) [Fig. 7(a)]. However, the split-

FIG. 7. GQD energies as a function of quantum dot position
RT = (XT ,YT ) relative to (a) a flower defect and (b) a Si substitution
defect for GQD displacement in y direction.

ting opens in a very symmetric way, εflower
± ≈ ε0 ± �τ/2 [gray

dashed lines in Fig. 7(a)], while the strong localization at the
double vacancy site induces an asymmetric valley splitting,
ε

vacancy
+ ≈ ε0 and ε

vacancy
− ≈ ε0 − �τ . Despite being a pure

relocation defect with comparatively large extent, the level
spectrum seems to approach the pristine limit much sooner
when increasing the GQD-defect distance. Moving the GQD
in x direction produces an almost identical response of the
levels as in Fig. 7(a), confirming the well preserved rotational
symmetry of the flower defect.

c. Silicon substitution. The level spectrum with a silicon
substitution defect [44] shows far smaller valley splittings
(2 meV for the lowest orbital). Its comparatively weak per-
turbation to the valley symmetry is also reflected by values of
Pτ close to 0 and 1 (red/blue color scale) with very narrow
avoided crossings. The lowest orbital shows no valley inver-
sion at all [Fig. 7(b)].

d. Magnetic field. The magnetic field is what enables
smooth confinement in the first place by creating the confine-
ment gap due to Landau quantization. We want to emphasize
that increasing (decreasing) the magnitude of the magnetic
field to first order only resizes this confinement gap and thus
merely globally shifts the level spectrum landscape to higher
(lower) values of V0. Investigating the system at different field
strengths (not shown) reveals that valley splittings �τ

i are not
significantly sensitive to the magnetic field strength.

e. Disorder. Some additional disorder (e.g., due to substrate
interaction) will undoubtedly be present in the experiment. We
create a correlated disorder potential VD(r) with various cor-
relation lengths lcorr and amplitudes V 0

D =
√

〈V 2
D〉, and 〈VD〉 =

0, by convolution of uncorrelated disorder with a Gaussian
kernel. This should adequately represent the typical potential
landscape of graphene on a nonaligned hBN substrate even in
the presence of possible defects/impurities in the hBN.

Very large lcorr of the order of the GQD size (FWHM ≈
20 nm) merely result in global shifts to all GQD levels with
almost no changes to the level splittings. In contrast, the influ-
ence of short-ranged disorder is a priori not clear. However,
since our system is deep in the Landau regime, another impor-
tant length scale is given by the magnetic length (lB ∝ 1/

√
B),

which in our case (| �B| ≈ 7 T) evaluates to about 9.4 nm. The
system thus averages over disorder on length scales below
this limit, and since 〈VD〉 = 0 the level spectrum landscape
recovers the unperturbed shape.

We consider valley projections for the double vacancy
(Fig. 8) as in (Fig. 6), but with additional disorder. Both the
induced valley splitting as well as the wave function char-
acter Pτ are robust for various amplitudes and characteristic
length scales of the disorder. Typical disorder up to a strength
of 10 meV with correlation lengths between 1.5 nm and
15 nm only slightly distorts the level spectrum landscape and,
most importantly, has no effect on the magnitude of the level
splitting. The two main changes of the wave function due
to disorder are (i) some density is induced at the vacancy
site [|�τ

i |2(r = 0) �= 0] for all orbitals, which leads to valley
mixing, and (ii) regions of low values of Pτ for large VD (green
color scale in Fig. 8) appear because the valley doublet in the
pristine basis becomes poorly suited to accurately represent
the distorted wave functions.
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FIG. 8. Level spectrum landscapes for the double vacancy defect (with GQD displacement in x direction) in the presence of correlated
disorder (dashed black lines correspond to vanishing disorder). The subplots are labeled with values for both

√〈V 2
D 〉 and lcorr . Each subplot

is additionally referenced by a sketch of the total on-site potential si (eV) throughout the graphene flake (120×100 nm2) to put the included
disorder into perspective.

IV. TRANSITION DYNAMICS

In the static system, lattice defects can induce sizable
valley splittings �τ of an order comparable to the orbital
splitting �O. We now investigate the dynamics of moving the
GQD with respect to the defect on time scales relevant for
the electronic dynamics. We find that dynamically traversing
the GQD in the vicinity of such defects provides an elegant
approach to drive transition between GQD states. An experi-
mental realization will require much shorter time scales than
those accessible via moving an STM tip. While dynamically
generating a moving potential well via electronic gates seems
plausible, fabricating an array of gates on the nm scale (as
is required for this task) remains a challenging aspect with
current resolution limits of electron beam lithography [45].

To elucidate the dynamics near an avoided crossing be-
tween two valley states, we consider a toy Hamiltonian of the
form

H (t ) = 1

2

[
αt �

� −αt

]
, (10)

describing the general structure of an avoided crossing: for
the diabatic Hamiltonian with conserved symmetry (i.e., � =
0), the two eigenenergies become degenerate at t = 0. For
broken symmetry (i.e., finite �), degenerate perturbation the-
ory yields an avoided crossing with an energy spacing of
�. Landau-Zener theory [46,47] provides a straightforward
analytical approach to estimate the diabatic transition proba-
bilities for propagating an initially valley-pure eigenstate past
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FIG. 9. (a) Schematic overview of the graphene flake with initial
and final y coordinate of the GQD center indicated by lines labeled
“A” and “B.” (b) Level spectrum landscape of the double vacancy
defect with the avoided crossing between levels 3 and 4 centered be-
tween lines A and B which correspond to the ones in (a). (c) Squared
projections (as labeled) of the propagated state as a function of y
coordinate. (d) Final values of the projections in (c) superposed onto
the analytical function for the diabatic transition probability.

the avoided crossing:

→ P(LZ)
diabatic ∝ exp

(
−π�2

2α

)
. (11)

The movement of the GQD is parametrized by the time t ,
and thus α = vT · |∇r(εi,− − εi,+)|, where vT = ∂t RT is the
traversal velocity of the GQD. The second term represents
the slope of the spectral landscape of a valley doublet in real
space. Close to an avoided crossing we consider one valley
doublet as an effective two level system (�τ � �O) such as
the one modeled by the toy Hamiltonian of Eq. (10). Different
traversal velocities vT allow for either adiabatic (low speeds)
or diabatic (high speeds) propagation of an initial eigenstate.
To simulate the dynamics, we use state-of-the-art time propa-
gation via Magnus operators with adaptive time steps based on
computable upper error bounds for the Krylov approximation
[48] and error estimates of the Magnus integrator [49]:

|�(tB)〉 = Û (tB, tA) |�+
2 〉 . (12)

We propagate an initial state |�+
2 〉 at (XT ,YT ) =

(0, 5.6) nm, indicated by the black dot and arrow in
[Fig. 9(b)], from A to B [see Fig. 9(a)]. The crossing has to be
approached by an instantaneous GQD eigenstate in level “1”
with a well defined velocity vT. We therefore have to smoothly
accelerate from a static eigenstate, which restricts the selec-
tion of possible crossings. We choose a rather wide [i.e., large

� in Eq. (10)] avoided crossing [between third and fourth
GQD level of the double vacancy in y direction; see Fig. 9(b)].
An even wider avoided crossing would require a larger traver-
sal velocity to achieve diabatic switching [Eq. (11)], reaching
values that cannot be sufficiently smoothly accelerated to,
because the neighboring avoided crossings would be in too
close proximity. Narrower [i.e., small value for � in Eq. (10)]
avoided crossings [e.g., see the avoided crossings generated
by the flower defect in Fig. 7(a)] would result in much too
long traversal times (this time for the adiabatic result) beyond
our computational time limits. In experiment much larger
time scales would be accessible and thus narrower avoided
crossings should be considered.

As we propagate our initial wave function from A to B
(Fig. 9) we project |�(t )〉 onto the third (|�+

2 〉) and fourth
(|�−

2 〉) orbitals of the static calculations of the otherwise
identical system. The projection Qτ (t ) on the valley τ = ±
at displacement XT (t ) is given by

Q+(t ) = |〈�+
2 |�(t )〉|2, Q−(t ) = |〈�−

2 |�(t )〉|2, (13)

and shown in Fig. 9(c). Note that we project onto the static
defect state at the same GQD position, not the pristine state.

Performing these calculations for a range of different
traversal velocities vT reveals the expected diabatic switching
for faster traversal. We calculate the “final” projection values
of 〈�−

2 |�(t )〉2 after the avoided crossing has been traversed
[blue crosses in Fig. 9(c)] as a function of the corresponding
velocity [Fig. 9(d)]. We find surprisingly good agreement with
the simple two-level Landau-Zener formalism. The distorted
nature of the underlying avoided crossing impedes a precise
evaluation of the parameters |∇r(εi,− − εi,+)| and � used in
the Landau-Zener formula. Due to the exponential sensitivity
of the transition curve on these parameters, a fit to our numeri-
cal data for the transition probability in Fig. 9(d) is much more
accurate than estimating these parameters directly from the
shape of the avoided crossing in Fig. 9(b). We thus determine
|∇r(εi,− − εi,+)| = 163 μeV/nm and � = 1.9 meV from a fit
to the data points in [Fig. 9(d)], and find these values entirely
consistent with the shape of the avoided crossing of the level
spacing landscape. Quantitatively predicting the required tran-
sition speed from the shape of the avoided crossings might
thus prove difficult. Nevertheless, the qualitative dependence
of the diabatic transition probability on the traversal speed still
offers an elegant way to enact controlled transitions between
GQD levels, a necessary first step for possible applications in
emerging quantum technologies.

V. CONCLUSIONS

We have modeled the response of the level spectrum of
smoothly confined graphene quantum dots to lattice defects
in tight-binding calculations. By embedding a local defect
parametrization, obtained from Wannier-projection of DFT
super cell calculations, we present an elegant way of ma-
nipulating the level spectrum of edge-free GQDs by making
use of some common imperfections of graphene lattice struc-
tures. We identify several avoided crossings within the valley
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doublets for the different quantum dot states. Conversely,
measuring the evolution of the quantum dot eigenenergies
with dot position would provide a sensitive probe for the
electronic structure of the defect. Transition dynamics in these
GQD-defect systems are well described by Landau-Zener the-
ory. The predicted defect-induced valley splittings �τ on the
order of up to 12 meV should be experimentally accessible
and warrant future research.
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