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Mirror symmetry breaking and lateral stacking shifts in twisted trilayer graphene
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We construct a continuum model of twisted trilayer graphene using ab initio density-functional-theory
calculations, and we apply it to address twisted trilayer electronic structure. Our model accounts for moiré
variation in site energies, hopping between outside layers, and hopping within layers. We focus on the role of
a mirror symmetry present in ABA graphene trilayers with a middle layer twist. The mirror symmetry is lost
intentionally when a displacement field is applied between layers, and unintentionally when the top layer is
shifted laterally relative to the bottom layer. We calculate two band-structure characteristics that are directly
relevant to transport measurements, namely the Drude weight and the weak-field Hall conductivity. We relate
them via the Hall density to assess the influence of the accidental lateral stacking shifts currently present in all
experimental devices on electronic properties. Finally, we comment on the role of the possible importance of
accidental lateral stacking shifts for superconductivity in twisted trilayers.

DOLI: 10.1103/PhysRevB.104.035139

I. INTRODUCTION

Crystals with bandwidths that are small compared to
electron-electron interaction scales feature strong electronic
correlations, tending toward magnetism and, at integer total
band fillings, Mott insulator states. It has been found theo-
retically that the periodic moiré potential in twisted bilayer
graphene (TBLG) slows low-energy electrons as the twist
angle becomes small [1,2], with electron velocities vanishing
at a discrete set of magic twist angles [3]. Interest in the
flat moiré minibands of TBLG increased after the discov-
ery of superconductivity and correlated insulating states near
magic angle twists [4,5]. Recent experimental and theoretical
work [6-41] has revealed a rich and detailed phenomenol-
ogy that includes exotic topological and correlated insulating
states [5,15,20,42], stripe charge order [8], and ferromag-
netism [14].

Twisted multilayer graphene systems have also attracted
attention [21,23,34,42-48], but they are still relatively lightly
explored. In multilayers, flat bands tend to occur at larger
twist angles [49], are less likely to yield energy gaps [21], and
can support higher temperature superconductivity [50,51].
The low-energy electronic properties of multilayers depend
on the orientation angle [21] of each additional layer and on
the relative stacking [49]. Furthermore, unlike the TBLG case,
different layers have different chemical environments [52],
and will therefore differ in site energy. Low-energy effective
models are periodic (with discrete exceptions) only if the
multilayer has only two distinct orientations among its layers.
These complications severely challenge the effort to derive
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predictive yet simple models for both structural and electronic
properties.

In this article, we focus on twisted trilayer graphene
(TTLG) in which two of the three layers are perfectly
aligned. At a qualitative level, these structures are interest-
ing because they can yield cases in which flat bands with
slow electrons and strongly dispersive bands that retain the
isolated layer Dirac velocities are present simultaneously.
We first derive low-energy continuum models from density-
functional theory (DFT) calculations by modeling the local
stacking (shown in Fig. 1) for various high-symmetry stack-
ing and twist configurations. These calculations, therefore,
account not only for the modulation of closest layer hopping
with moiré position, which is the dominant effect, but also
for modulations of direct hopping between the outside lay-
ers, intralayer Dirac velocity, and site energies. Combining
the effective continuum model and parameters from first-
principles calculations, we obtain a first-principles continuum
model that not only provides a relatively accurate modeling
for twisted multilayer graphene, but also avoids large-scale
first-principles calculations [48,53,54]. Indeed, the latter can
only model compensated periodic moiré systems and cost
tremendous computational resources, especially when con-
sidering the effect of lateral stacking shifts and more layers.
We find that the subdominant modulations play an essen-
tial role in determining the energetic alignments between
the large and small velocity bands [55]. More significantly,
we show that twisted trilayer graphene electronic structure
has a qualitative sensitivity to relative lateral stacking shifts
of the outer layers, which currently cannot be controlled
experimentally, and to perpendicular electric fields. To pro-
vide physically relevant characterization of the influence
of lateral stacking shifts on electronic structure, we calcu-
late Drude weights, weak-field Hall conductivities, and Hall
densities, which are experimentally accessible and can thus
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FIG. 1. Local stacking configurations in moiré lattices. (a) Pri-
mary moiré unit cell with lattice vectors R; and R,. In the primary
moiré unit cell, local stacking between layers is dependent on the po-
sition within the primary moiré unit cell. (b) The local stacking value
at a given position r within the moiré unit cell can be approximated
by alocal displacement vector d within a pristine unit cell. The lattice
vectors of the pristine graphene lattice are a; and a, as shown, and
the carbon atoms in the two layers are distinguished by red and blue
circles; compare (c)—(e).

be used to provide a point of contact between theory and
experiment.

In the absence of twists, ABA stacked trilayer graphene
features an important mirror symmetry, which is preserved
when only the middle layer is twisted. The mirror symmetry
decouples large velocity odd-parity and small velocity even-
parity states [49,56]. A perpendicular electric field breaks
the mirror symmetry while conserving C,7 symmetry that
allows the Dirac point degeneracies. More to the point, a
lateral stacking shift of only the top layer of TTLG breaks
both symmetries. Since it is—for now—not possible to stack
layers with controlled lateral stacking shifts, realistic TTLG
devices do not possess the mirror symmetry of the ideal
middle-layer-twist structure. Indeed, lateral stacking shifts
change the energetic alignment of the bands of the large- and
small-velocity states. Combinations of perpendicular electric
fields and lateral stacking shifts of the top layer change the
electronic structure in a nontrivial way, which we characterize
in terms of changes in the weak-field Hall conductivity, the
Drude weight, and the Hall density.

The organization of this paper is as follow: In Sec. I we
introduce the continuum model used in this paper and explain
how to obtain the model parameters from DFT calculations.
In Sec. I A we use the model to discuss and simplify the
electronic band structures of several single twist TTLG stack-
ing configurations, including the case of devices in which
an outer layer is rotated and the other two layers are held
in the AB stacking configuration. In Sec. III B we introduce
the experimentally relevant band characteristics, including the

Drude weight, weak-field Hall conductivity, and Hall den-
sity. In Secs. IIIC and IIID we discuss the dependence of
the electronic structure, Drude weight, and weak-field Hall
conductivity of middle-layer twist devices on electric field
and lateral stacking shifts. Here we find that lateral stacking
shifts do have a strong influence on electronic properties,
particularly electronic properties that are likely to be relevant
for superconductivity, and that Hall density and Drude weight
measurements can shed light on the lateral stacking shifts
of particular devices. Finally, in Sec. IV we summarize and
discuss our results.

II. THEORETICAL METHODS
A. Continuum model

We describe the trilayer using a six-band continuum model
that accounts for -orbitals on both honeycomb sublattices of
all three layers, allowing on-site energies and both intralayer
and interlayer coupling to vary spatially as the stacking
changes on the moiré length scale. The approach we take
in this paper can be generalized from the trilayers we con-
sider to arbitrary graphene multilayers, all of which have
Hamiltonians H that can be partitioned as follows:

H= / dr[Hp + Hy(®) + H@ +T@, (1)

where Hp is a valley-projected isolated layer Dirac Hamilto-
nian for layer / with orientation

Hp = Zh"‘ﬂ(—iﬁr, et cip. )
lap
h(—idy, 0;) = h(Kk, 6;)|xk——is. 18 given explicitly in Ap-
pendix A. In Eq. (2), «, 8 are sublattice labels. H,(r) accounts
for corrections to on-site energies due to the moiré pattern,

Ho(r) =) el (r)c), (O)cia(r), 3)
l,a

and H, (r) accounts for corrections to the coupling within and
between aligned layers,

Hi(r) =Yty ()], (X)cr p (), @)

Iap

i.e., to spatial variations of the Fermi velocity and coupling
variations between aligned layers. Finally, 7 (r) is the term
that captures tunneling between layers that have different
orientations, the term that most prominently alters single-
layer electronic structure in moiré multilayers. The interlayer
tunneling Hamiltonian has the same form as that of a tight-
binding model in which the coupling between sites is a
function of lateral stacking shifts [3]:

.G, —iq-
Ty = Y &S e e (s ), (5)
I£l'ap'n

where (I") labels the layer and g/" is the Dirac point momen-
tum difference between the layers [ and I, with

=K -K;, +G". (6)

Here G!' ~ —0% x G!' is the corresponding difference
between the reciprocal vectors that connect equivalent

035139-2



MIRROR SYMMETRY BREAKING AND LATERAL STACKING ...

PHYSICAL REVIEW B 104, 035139 (2021)

downfolded Brillouin-zone corners K; (K; ) [3]. Since the cou-
pling elements that have equal magnitude momentum boosts
|q/'| are related to each other by symmetry, we group the q*/
into “shells” of equal length. In this approach, it is natural to
explicitly exhibit the dependence on the sublattice due to the
difference in corresponding m-orbital Wannier function posi-
tions by letting wg};’/G" — wé’/ eiGn ,'(’a"ﬂ’), where 7, specifies
the o sublattice position in the layer /, and g =75 +d
specifies a sublattice position in the layer !’ in which d is
shown in Fig. 1(b).

In TBLG this approach can be successfully applied on a
purely phenomenological basis, because the number of re-
quired parameters is small. In TTLG, however, the difference
in chemical environment between the inside and outside lay-
ers, and the possibility of tunneling directly between top and
bottom layers, causes a proliferation in parameters, and guid-
ance from ab initio theory is needed.

B. Ab initio calculations

Closely following an approach introduced by Jung
et al. [57], we employ the approximation that the small twist
angle moiré Hamiltonian depends mainly on the local coor-
dination between the layers. We are interested in the case in
which one subset of layers is twisted relative to the others by
an angle 6. If the twist is rigid, the twisted layers are displaced
relative to the untwisted layers by (compare Fig. 1)

diry~6zxr. @)

Truncating the Hamiltonian to m-orbitals, the local Hamil-
tonian H(r) can be expressed in terms of the displacement
vector d(r),

H(k, d(r) = Y (lak[HT)[I'B'k) [lek)(' Bkl (8)

iap

Here [ labels the layer, a(8’) labels sublattice sites within
each layer’s honeycomb, and d is the displacement of the
twisted layers. The Hamiltonian as defined above is periodic
in d when translated by pristine lattice vectors. By Fourier
transforming the Hamiltonian matrix elements subject to such
a translation condition via

HlL(k dr) = Ak, G, ©9)
G

and using the identity G -r =G, - (=0% xr) = —G - d(r),
one can approximate the r dependence of the Hamiltonian
with just a few Fourier components. This approach will only
be successful if |Holll/.; (K, G)| drops to zero sufficiently quickly
with increasing G.

We find that this condition is fulfilled due to the smooth-
ness of the parameter variation obtained from the sampled
configuration space. Indeed, using Eq. (9) it is possible to

. . . . ~l Al .G
identify the expansion coefficients &, ¢, 7,5 ., and w, g~ of

Egs. (3)~(5) with the corresponding ., (K, G) [57]. We thus
obtain a moiré band model from ab initio calculations per-
formed on pristine cell graphene multilayer structures that
has the same structure as the continuum model outlined in
Sec. IT A. For further details on the ab initio calculations, we
refer the reader to Appendix B.

TABLE 1. Interlayer tunneling parameters a)(’j/;G for different
single-layer-twist trilayer structures. The four stacking configura-
tions (AAd, ABd, AdA, and AdB) are specified by listing the layers
from bottom to top, with the twisted layer labeled d to suggest
the displacements used in the DFT calculations to represent twist
locally. Each shell corresponds to momentum boost qﬁl’/ shells con-
taining members of equal length [see Eq. (6)]. More explicitly to
G! =i.b +j-by with (i, j) € {(0,0), (1,—1), (1,0)} for the
first shell, (i, j) € {(0,1), (0, —1), (2, —1)} for the second shell,
and (i, j) € {(2,-2), (1, =2), (—1, 0)} for the third shell. Nonzero
phases are denoted in parentheses. The band parameters are given in
meV units, and b, m, t label the bottom, middle, and top layer, re-
spectively. The smaller band parameters that account for site-energy
variation and hopping between aligned layers are listed in Tables II
and II1.

Shell ot oh  of o o o
AAd

First 91 106 2 3

Second -9 6 0 0

Third -5 4(47) 0 0
ABd

First 90 105 3 3

Second -9 5 0 0

Third —4 5(56) 0 0
AdA

First 93 105 93 105

Second -8 4 —8 4

Third -5 4(50) -5 4(50)
AdB

First 94 107 91 105

Second -8 6 -9 5

Third —4 5(49) —4 5(43)

A detailed analysis of the resulting band parameters re-
veals that many arguments advanced for the TBLG case also
hold for the trilayer case. In line with TBLG and previous
publications on TTLG [21,49], the dominant contribution to
the interlayer coupling strength stems from the first-shell in-
terlayer coupling elements, which are of similar magnitude
to the values for TBLG. The first shell here denotes the ¢,
that connect the two layers at the first Brillouin zone edges
at the vicinity of the K point (see Table I). However, the
second-shell contributions are not completely negligible in the
TTLG case (see Table I). Equally subtle and relevant is the
energy alignment between the layers, and the spacial variation
of on-site energies and Fermi velocities on the length scale of
the moiré, and the tunneling elements that couple the outer
two layers (see Tables II and III).

III. TWISTED TRILAYER ELECTRONIC STRUCTURE

Armed with realistic single-particle trilayer Hamiltonians,
we are now in a position to address electronic structure. The
most important difference compared to the simple TBLG case
is that electronic properties are in most cases sensitive to
translations of individual aligned layers [49,56]. We focus
on four special cases: a middle-layer twisted trilayer with
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TABLE II. Fourier components of intralayer coupling constants.
Units are set to meV, subscripts b, m, t label the bottom, middle,
and top layer, respectively, phases are denoted in parentheses. In
this table, the Fourier components not explicitly listed sz...._(, can
be obtained via fg, = fo, = fo, = f§, = f§, = f{, if @ = B and
fi=f=fe T =feeTT = fie'T = fie’T ifa # B[57]. Fur-

¥

— A Al
thermore, €4 ¢ = €5 _¢ and lupc =gy -

5.0 .G, YA G .0 .,

gAb.o éﬁ,e, €0 é:xn,el €0 @Q.Gl
AAd

2611 0 2606 2(60) 2605 2(60)

6 0 -9 2(28) 3 2(=31)
ABd

2591 0 2608 2(60) 2606 2(60)

2 0 —13 2(—40) 11 2(30)
AdA

2605 2(60) 2602 3(60) 2605 2(60)

5 2(—30) -10 3(30) 5 2(—30)
AdB

2605 2(60) 2602 1 2583 2(—60)

5 1(—60) —11 2(-36) 6 1(~150)

the outer layers in either AA stacking (AdA) or AB stacking
configuration (AdB), and top-layer twisted trilayers with the
other two layers in either AA (AAd) or AB stacking (ABd)
(see Fig. 1). Our results show that the moiré band structure of
twisted trilayers depends not only on parameters that are in
principle experimentally controllable, such as the twist-angle
or a gate-controlled displacement field, but also on one vari-
able beyond current experimental control, namely single-layer
lateral displacements on the atomic scale.

A. Trilayer stacking dependence

We first contrast the continuum model band structures for
the four different single-twist trilayers (compare Fig. 2), each

(b) ABdatl.15°

TABLE III. Fourier components of coupling constants between
aligned layers. Units are set to meV, subscripts b, m, t label the
bottom, middle, and top layer respectively, phases are denoted in
parentheses. The Fourier components not explicitly listed szmﬁ can
be obtained via: f; = f, = fge;%nfj = f6e;25ﬂ = j;ezﬁ? = fsez%rrj for
AdA where « # 8 and the AdB 7%, case, via fi = f; = e 5 =
fre 7 = fse’F = fee’F for the AdB 7%, and %, cases and via
h=fH=f= f; = fI = fg for the others. Furthermore the iden-

_ AL

tity #lly ¢ = 15"  holds.

G G, 550 5.6,

fago ’%’,G] foro tgzl,Gl
AAd

225 0 225 0

0 0 0 0
ABd

0 0 0 0

357 2 0 0

G G G o6,

fbt “bt bt “bt

A0 1aB.G, Igao g,
AdA

4 2(—70) 4 2(70)

0 2(60) 0 2(—60)
AdB

0 -2 0 2(—60)

4 2(—60) 0 )

calculated at a twist angle close to its flat-band condition using
model parameters extracted from the DFT calculations. The
electronic structure is most interesting in the AdA case, upon
which we subsequently focus, because its flat bands emerge
cleanly and are accompanied by strongly dispersive bands
covering the same energy interval.

To demonstrate the relevance of the smaller model-
parameters in the continuum model Hamiltonian that we have

(c) AdA at1.65° (d) AdB at1.65°
K, T r Ki K, Ko r K

FIG. 2. Continuum model moiré band structures for four different TTLG at the largest magic angle including all ab initio derived coupling
elements. (a) Top-layer twisted trilayer with the bottom two layers in AA stacking (AAd); (b) top-layer twisted trilayer with the bottom two
layers in AB stacking (ABd); (c) middle-layer twisted trilayer with the outer two layers in AA stacking (AdA) (this structure has an emergent
mirror symmetry); (d) middle-layer twisted trilayer with the outer two layers in AB stacking (AdB).
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FIG. 3. Moiré bands of TTLG in the AdA stacking configura-
tion at a twist angle of 1.55°, successively adding terms from the
continuum model in Eq. (1). (a) Bands calculated including only the
twisted layer tunneling (7°) and intralayer Dirac cone (Hp) terms in
the Hamiltonian (red), and bands when the site energy term (Hj)
is also included (dashed blue). (b) Bands when hopping between
different sites of aligned layers are also included (H,). The red and
blue curves, respectively, include and neglect coupling between the
outer layers.

estimated using DFT, we point to the band alignment of AdA
stacked TTLG. We compare moiré band calculations based
either on only the dominant Hp and 7 terms in the model
Hamiltonian [see Eq. (1)] or also on the on-site energies H.
(see Fig. 3). We find that the effect of H; is to induce an energy
difference between the Dirac point of the dispersive bands
and the flat-band energy. Intralayer corrections to the Fermi
velocity (the #’s from Table II) and direct hopping between
outer layers (the ¢’s from Table III) further modulate the bands
in a nontrivial manner (see Fig. 3), particularly by changing
the shape and relative alignment of the flat bands. Indeed,
all of these contributions to the Fermi alignment are of the
same order of magnitude. A quantitative description of the
final alignment between the highly dispersive bands and the
flat bands, therefore, requires carefully considering all of these
terms.

While all small contributions in our ab initio model are rel-
evant for the detailed analysis of the band evolution, simplified
models suffice for discussing qualitative band-structure prop-
erties. Importantly, the symmetries that dictate many band
properties, such as the mirror symmetry for the AdA case, are
present in both the full and the simplified model. In the fol-
lowing, we use the simplified version, including only Hp, H,,
and T; for ABd stacking we additionally use the values from
Table III. The simplified models facilitate the comparison of
AdA and ABd electronic structure in Fig. 4, and they predict
the difference of the first magic angles for top-layer (ABd)
and middle-layer (AdA) twisted trilayers, i.e., the first magic
angle for the AdA stacking is ~ +/2 times larger than that for
the ABd case.

AdA stacked TTLG has a mirror symmetry (Z — —2),
which leads to even- and odd-parity bands and allows
the even-parity flat and odd-parity dispersive bands to
cross [21,49]. As we will show in the following, this mirror
symmetry is important, especially for the density of states
(DOS) and for transport properties. The decoupled flat bands
and dispersive Dirac bands hybridize whenever the mirror

(a) ABd at1.15° (b) AdA at 1.65°

Energy [eV]
o
o

Ky K> r r K K1 K> r r K1

(c) DOS (ABd) (d) DOS (AdA)
T

| |
1 |
| : I
| 1
lo=1.15° 19=1.65°
1 | 1
0.5 1.5 2.5 3.5 05 1.5 2.5 3.5
Twist angle [°] Twist angle [°]

Energy [eV]
o o
o =

|
©
—

FIG. 4. Simplified band structure and density of states (DOS) of
ABd (a,c) and AdA (b,d) stacked TTLG. Parts (a) and (b) are the
band structures of top-layer (ABd) and middle-layer (AdA) twisted
trilayers at a particular close-to-magic twist-angle, and (c) and (d) are
twist-angle-dependent DOSs with the twist angles of (a) and (b) la-
beled by blue dashed lines.

symmetry is broken, for example by substrate effects, by
applying an external electric field or by shifting the top layer
laterally [49]. With broken mirror symmetry, the width of the
flat bands, and therefore the electronic correlation strengths,
can be tuned by applying an electric field.

B. Experimentally relevant band characteristics

We now focus on AdA single-layer-twist trilayers. To pro-
vide a sense of the experimental relevance of the electronic
structure variability that we analyze, we provide results not
only for the energy band dispersion and density of states, but
also for other experimentally relevant band-structure charac-
teristics, i.e., other observables that depend only on the energy
bands.

1. Drude weight

The Drude weight (also known as the charge stiffness)
measures the inertia of the electronic response to external
electric fields. In the case of metallic bands, we can utilize
Kohn’s formula [58] to calculate the Drude weight from band
velocities v,k, = (nk|0H/dk,|nk)/h via

32 afnk
D, =— E dK —— Uk, Vnko- 10
" on . /BZ dg iUk (10)

In the case of interest, C3, symmetry in a two-dimensional
electron system ensures that the Drude weight tensor is pro-
portional to the unit matrix [59], i.e., Dy, = D, and Dy, =
Dy, = 0, as shown in Appendix C. The longitudinal conduc-
tivity is proportional to the product of the Drude weight and
the transport scattering time.
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2. Weak-field Hall conductivity

Using the Jones-Zener solution of the Boltzmann equa-
tion [60],

e —0fk
Oxy = 2_B/dk_(vvrk)(vv8kx — U0 ) (v Tk), (1)
’ h de - ’ ’
we also calculate the weak-field Hall conductivity oy, as
a function of displacement field and carrier density [see
Fig. 6(d)]. Here 7y is the relaxation time, which we approx-
imate tx ~ T by a constant, and 9y, = 9/0k,. We express
the Hall conductivity in units of (¢?/h)(2[eV ]t /hi x a/lp)* |7
where Iy = y/h/eB is the magnetic length and a is the lat-
tice constant of graphene. At weak magnetic fields, the Hall
resistivity oy, = —0yy /o} is independent of the transport
scattering time and is a pure band-structure property, and in
the case of isotropic bands it is inversely related to the carrier
density.

3. Carrier density and Hall density

To facilitate comparison with experimental studies of sam-
ples with gate-controlled carrier densities, we will sometimes
express our results in terms of carrier density instead of Fermi
energy. The mapping from chemical potential to carrier den-
sity can be obtained by integrating the DOS D(E),

Er
n=4x —
m JE,

D(E)f(E)dE, 12)

where Q,, = |R;|?>sin /3 is the area of a moiré unit cell and
IRy| &~ |a;|/0 is the length of the moiré period. The factor
4 accounts for valley and spin degeneracy. Ey is the Fermi
energy at neutrality, where the bands of the moiré system are
half-filled, and f(E) is the Fermi-Dirac distribution function.
The carrier density can be compared directly with the so-
called Hall density,
212
=2 =B (13)
Pry€C OxyeC
which is independent of transport lifetime and therefore a
band characteristic. The expressions quoted above apply only
in the relaxation-time approximation. In the limit of a single
isotropic closed Fermi surface, the Hall density is equal to the
carrier density.

C. Mirror symmetry and displacement fields

We now discuss mirror symmetry breaking by gate-
controlled displacement fields. In our calculations, the influ-
ence of the displacement field is modeled by adding a term to
the Hamiltonian that creates a relative difference between the
energies of sites located in different layers:

He(r) =Y Vi(E)e], (X)cia(r). (14)

la

In the following, we will set the displacement potential in the
middle layer to 0, and in the outer layers to £Vg¢.

In the top panels of Fig. 5, we illustrate the dependence
of the flat bands around the Fermi energy on displacement
potentials. We see that hybridization between the odd-parity
dispersive bands and the even-parity flat bands increases

steadily with displacement field, with the result that all bands
become dispersive. The C,7 symmetry that allows Dirac
points at the moiré Brillouin-zone corner is not broken by ap-
plied displacement fields and linear band crossings therefore
remain—although they are shifted in energy. We see in the top
panels of Fig. 5 that the total width of the broadened flat bands
is approximately proportional to the displacement potential.
In the bottom panels of Fig. 5 we show that the DOS (red
curves) peak is close to the neutrality point at all displacement
fields. By contrast, the Drude weight has a minimum in the
vicinity of the neutrality point, due to the flatness (very low
band velocities) of these subbands [see the lower panel of
Fig. 5(a)]. When a finite displacement field is present, the
Dirac points originating from the odd-parity bands and the
minima of the Drude weight are energetically shifted. Local
minima of the Drude weight emerge at the Dirac points and
are present until these touch the edges of the surrounding
bands (see the lower panel of Fig. 5). Further increases in the
displacement field move the minimum of the Drude weight
back to neutrality. Two trends are at play: (i) the width of
the flat bands increases, raising the band velocity. The Drude
weight therefore increases despite the decrease in the DOS.
(i) The Dirac points (where the DOS is minimal) of the
outer layers are shifted away from the charge-neutrality point
E = 0. The Drude weight is then mainly determined by the
band velocities, which become minimal near E = 0 (lower
panel of Fig. 5).

The Drude weight’s dependence on Fermi energy in
Fig. 6(a) is converted in Fig. 6(c) to a dependence on carrier
density. The carrier density (n) changes rapidly with Fermi
energy in the region of the flat bands [see Fig. 6(a)]. We find
that the maximum of the DOS is pinned to the flat-band Dirac
point [compare Fig. 6(a)]. The edges of the subbands closest
to the flat bands in energy tend to move together with increas-
ing displacement potential. The Drude weight [Fig. 6(c)] is
small over a wide energy range near neutrality, as expected
given the ultralow band velocities discussed above.

Analyzing the resulting Hall conductivity (oy,) we find
that—for filled flat bands—the carriers have electron char-
acter even below neutrality, highlighting that the dispersive
Dirac bands play a dominant role in the Hall conductivity
around half-filling, and that the Dirac point of the dispersive
band lies below the flat bands in energy. Furthermore, the
electron character of the Hall conductivity in general depends
only weakly on the displacement potential. In Fig. 7, we com-
pare the actual carrier density with the Hall density, defined
in Eq. (13). Comparisons of Hall density and total carrier
density are readily made experimentally and are therefore a
convenient point of comparison with theory. We see in Fig. 7
that the Hall density is strongly dependent on displacement
field when the Fermi level lies within the flat bands, and much
more weakly so when the Fermi level lies outside the flat
bands.

D. Mirror symmetry and lateral stacking shifts

Because accidental lateral stacking shifts are present in all
current trilayer devices, it is important to understand their
influence on electronic properties. In contrast to the trilayer
case, lateral stacking shifts have no influence on the electronic
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FIG. 5. Band structure and transport properties of AdA-stacked TTLG for various displacement fields. The top panels of (a)—(d) show
band structures as the displacement potential increases from 0 to 150 meV. Mirror symmetry breaking couples the even-parity flat bands to the
odd-parity dispersive Dirac cone bands. The Dirac points of the outer layers are pushed away from the Fermi level, but they are protected by
symmetry. The lower panels of (a)—(d) illustrate the evolution of the DOS and the Drude weight with displacement potential.

structure of bilayers [3,49]. For the TBLG case, the interlayer
tunneling Hamiltonian in Eq. (5) is

T(r)= Z wf}; eiG"'(T"’Tﬂ’)e’iq”'cm(r)cﬁr (r),

af'in

s)

where the bilayer interlayer tunneling waﬁ has no layer-
dependent index, and we explicitly denote the phase shift
introduced by the atomic positions 7,gy. A general change
in layer alignment at the origin (tg — 7 + dians) can be
expressed as a lateral stacking shift d(ryans) = 02 X Fyans
and thus simply manifests as an extra phase /G d(r+Twns) jn
Eq. (15), without changing the phase of the interlayer tunnel-
ing matrix elements w2}, Translating the layer that is rotated
relative to the two other layers (e.g., shifting the top layer in
an ABd configuration) in a TTLG therefore leaves the elec-
tronic structure—in analogy to the TBLG case—unchanged.
In contrast, changing the relative lateral stacking of the two
aligned layers strongly alters the electronic structure of the
TTLG. Since all configurations with a twisted outer layer
except the ABd configuration depend on accidental lateral
displacements, we focus herein on the case of middle-layer
twisted trilayers.

Translating the moiré patterns involving the top layer
changes the value of all coupling terms, as highlighted, e.g.,
by the differences between AdB and AdA stacking in Ta-
bles I, II, and III. However, these changes are small, and
we will neglect them. The remaining moiré shifts can be ac-

counted for entirely by phase factor changes [49] for tunneling

between the top layer and the other two layers, i.e., in wz’[',"'G"
and wZ‘,’S”G". We write a general spatial shift of the moiré

pattern as

dy = LR 4+ Ry, (16)
where R and R, are the lattice vectors of the moir€é unit cell.
Since properties can depend only on the displacement modulo
moiré lattice vector shifts, we can restrict our attention to 0 <
M1, Ao < 1. These moiré pattern shifts correspond to top layer
displacements by A = 62 x dy; = A1a; + Ara, with a;/a, the
lattice vectors of graphene. The phase factors that account for
lateral displacements are therefore exp(iG, - A), where G,, -
A= )\.]Gn - al +)L2Gn - ap.

The top layer lateral stacking shift breaks not only the
mirror symmetry but, unlike an applied external displacement
field, also C,T symmetry. As illustrated in the top panel of
Fig. 8, the flat-band Dirac cone is therefore gapped when
dys # 0, and the dispersive band Dirac points are both gapped
and, because of mirror symmetry breaking, shifted away from
the flat bands. When the lateral stacking shift moves from
dy; = 0 along Ry, the maximum in the Fermi level DOS shifts
away from neutrality. Lateral stacking shifts split the flat band
DOS peak, and the Drude weight develops two local maxima
around its global minimum (lower panels of Fig. 8).

For dy = 0, the Hamiltonian features C3, symmetry for
all displacement fields guaranteeing isotropic linear-response
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FIG. 6. Drude weight [in units of eV/ K(e*/h)] and Hall conduc-
tivity as a function of carrier density and displacement potential.
(a) The lower panel of Fig. 5(a) plotted over a wider range of Fermi
energy. The dashed green line is a plot of the carrier density. The
scale of the carrier density plot is implied by the green arrows that
mark where n = +4n;, with n; one electron per moiré unit cell
(ns ~ 1.58 x 10'2 cm™2). (b) Density of states vs Fermi level with
the displacement potential varied from —150 to 150 meV. (c) Drude
weight (2D = D,, + D,,) and (d) Hall conductivity (o,,), plotted as
a function of displacement field and carrier density.

transport coefficients (see Appendix C). By contrast, C3, sym-
metry is lost when dy; # 0. To quantify the degree of transport
anisotropy produced by accidental lateral stacking shifts, we
consider D, and D,, as a function of Fermi energy and dy,
along R [see Figs. 9(a) and 9(b)]. The difference between D,
and Dy, becomes maximal at dy; = R;/2 [compare Figs. 9(a)
and 9(b)]. It follows that measuring the transport anisotropy
can be extremely valuable in characterizing twisted trilayer
devices.

In Fig. 10 we examine the influence of lateral stacking
shifts on the flat-band width, the Drude weight, and the Hall

Hall density vs. displacement field

150
100
_. 50 b
= :
£ 0 0 o
o S
_50 <
C
~100
~150 -1

-10 -5 0 5 10
n [1012cm~2]

FIG. 7. Hall density (ny) as a function of carrier density (n)
and displacement potential (V,). The dashed yellow lines mark the
densities +4n,. Between these densities, the Fermi level lies within
the flat bands.

conductivity. For the perfect AdA stacking configuration with-
out a lateral stacking shift, the Drude weight (D = Dy, + Dy,)
is always small for carrier densities in the flat-band range
—4n; < n < 4ng [see Fig. 10(a)]. In this range of density, the
Hall conductivity varies approximately linearly with carrier
density and features an n-type sign at charge neutrality.

The evolution of the width of the flat bands as a function
of stacking shift [Fig. 10(b)] reveals that the two bands clos-
est to charge neutrality are not narrow at all lateral stacking
shifts, reaching up to 70 meV — close to typical bandwidths
in graphene multilayer moirés [3,61]. The flat-band width is
minimal near dy; = 0 and close to the dy; = (R; + 2R;)/3
and dyy = (2R; 4+ Ry)/3 lines. Magic angle behavior is there-
fore common but not universal as a function of lateral stacking
shift. Correspondingly, the Drude weight near neutrality in-
creases when the top layer is shifted away from the AdA
configuration. Generally speaking, it still remains small com-
pared to values outside the flat-band region of carrier density.
The increase in Drude weight is linked to the increase of band
velocity due to increased flat-band width. The change in sign
of the Hall conductivity [see Fig. 10(d)] shifts toward neutral-
ity for nonzero d);. The evolution of the Hall densities with
n at different stacking shifts (Fig. 11) shows a similar trend:
for djs = 0, the Hall density changes sign not at neutrality
but at a negative carrier density. The reason is a competition
between the contributions from the odd-parity dispersive band
and the even-parity flat band to the Hall conductivity. When
the two sets of bands are coupled by d,; # 0O, the Hall density
sign change generally occurs much closer to charge neutrality.
Measurements of the Hall density can therefore be used to
determine the strength of mirror symmetry breaking in AdA
trilayers.

Finally, we comment on the band gaps that are opened by
coupling between even- and odd-parity bands at dy; # 0. We
identify three different gaps: A, between the flat conduction
band (first band above neutrality) and the flat valence band
(first band below neutrality), A. between the first and second
conduction bands, and A, between the first and second va-
lence bands [see Fig. 12(a)]. In Figs. 12(b)-12(d) we show
that gaps are present for some lateral stacking shifts in our
single-particle picture. There is, however, no shift for which
A, #0and A./A, # 0 simultaneously, highlighting the rar-
ity of isolated gapped flat bands in a TTLG system.

IV. SUMMARY AND DISCUSSION

We have used density-functional-theory input to construct
a continuum model for twisted trilayer graphene that allows
for moiré-induced spatial variation not only in tunneling be-
tween adjacent layers but also in hopping between top and
bottom layers, in Fermi velocity, and also in the site energies
of both interior and exterior layers. The additional moiré ef-
fects are secondary to the variation of adjacent layer tunneling,
but they do have a quantitative impact on moiré superlattice
electronic properties of TTLG systems.

Using this platform, we examine the dependence of moiré
electronic structure on the accidental lateral stacking shift
dys, which is not controlled experimentally in current de-
vices. For the interesting case of middle-layer-twist devices,
we view the electronic structure through the filter of mirror
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FIG. 8. Band and transport properties of TTLG with a twisted middle layer for several lateral stack shifts along the R, direction. (a)—(d) Top
panels, band structures; lower panels, DOS and Drude weight: Shifting dy; away from zero breaks the mirror symmetry and the C,7 symmetry,

causing the Dirac points to gap.

symmetry, which plays an essential role in the ideal dy; = 0
(AdA stacked) case. In such a configuration, a crossing be-
tween a strongly dispersive odd-parity band and even-parity
bands emerges. The latter show magic-angle flat-band behav-
ior at a twist angle that is larger than the case in twisted
bilayer by a factor of /2. We characterize electronic structure
not only by band-structure plots and DOS profiles, but also
by calculations of the Drude weight, the Hall conductivity,

(a) Dyx (b) D
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0.8 t1.4 1.4
3 1.2 1.2 o
— ] wls
g 0 1.0 1.0
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-0.1 0.0 0.1
Energy [eV]

FIG. 9. Drude weight D,, and D,, vs the Fermi energy. Unlike
the case in which we included a displacement field, lateral stacking
shifts break the Cs, symmetry and lead to anisotropic transport.

and the Hall density—which are closely related to routine
transport characterizations of moiré superlattices. We find that
all electronic properties can be strongly altered by accidental
lateral stacking shifts. Our results for the Hall density and the
Drude weight can be used to experimentally infer the value of
dy/ in a particular device.

Recent experimental work [50] has demonstrated that
AdA trilayers at their magic angle can exhibit superconduct-
ing domes similar to those of magic-angle twisted bilayer
graphene (MATBG). The simplest interpretation of these ex-
periments is that superconductivity occurs in the even-parity
bands, with the odd-parity bands acting as passive spectators,
and that the microscopic physics behind the superconductivity
is very much like that of MATBG. If so, our work shows
that dj; must be small in the measured devices. This property
could be confirmed by Hall density measurements, for which
our calculations show that odd-parity bands are not spectators
at dy; = 0. It is possible that the value of dj; achieved by
the stacking processes employed today is not accidental, and
that dy; = 0 is preferred for unknown reasons. In this case,
superconductivity in magic angle twisted bilayers and trilay-
ers could indeed be very similar. Our analysis motivates Hall
density and Drude weight measurements that could prove or
disprove this ansatz.

Moiré superlattice continuum models in multilayers are
less constrained by symmetry than in the bilayer case. Our
microscopic DFT calculations capture details that have not
been included in previous continuum models. Although the
secondary terms in the model are less important than tunneling
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FIG. 10. Influence of stacking-shift on experimentally accessible
observables. (a) Drude weight (D = D,, + D,,) and Hall conductiv-
ity (oyy) at zero lateral stacking shift (dy, = 0). (b) Flat-band width,
defined as the difference in energy between the top of the first band
above neutrality and the bottom of the first band below neutrality,
vs top layer stacking shifts over one moiré unit cell bounded by R;
and R, [see also Fig. 12(a)]. The bandwidth, which is minimal at
zero lateral stacking shift, reaches up to around 70 meV for some
configurations. (c) Drude weight and (d) Hall conductivity vs dy,
along the R, direction.

between adjacent layers, they do have a significant effect on
observable quantities. Their importance is magnified by the
narrow widths of the flat bands, especially for the symmetry-
protected cases of dy; = 0 middle-layer twisted trilayers. For
this case, the energetic alignment of flat bands and the de-
coupled Dirac cone strongly affects the DOS and the Hall
conductivities. As our quantitative understanding of graphene
multilayer moiré systems improves, including these secondary
terms will play a more important role.

Hall density vs. stacking shift
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FIG. 11. Hall density (ny) as a function of carrier density (n)
and lateral stacking shift (d,). The Hall density at neutrality is
n-type for dy; = 0, and much closer to 0 for dy; % 0. Hall density
measurements are sensitive to the strength of coupling between even-
and odd-parity bands.
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FIG. 12. Evolution of the gaps between AdA minibands. The
band gaps A,, A, and A, are defined in (a). The dependence of
their magnitudes on lateral stacking shift is plotted in (b)—(d). For
most stacking configurations, no gap is present. However, for some
stacking configurations a small gap opens between the flat bands
shown in (b), as well as between the flat bands and the dispersive
bands shown in (c) and (d).

Many of these conclusions concerning middle-layer
twisted trilayers generalize to odd-number-layer twisted mul-
tilayers, which are projected to feature flat bands at even larger
twist angles, and therefore possibly a higher superconducting
T.. Understanding accidental lateral stacking shift properties
and the relationship between lateral shift variability and stack-
ing processes will be important if we wish to use layer number
as an intentional design parameter for multilayer moir€s.
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APPENDIX A: DEFINITIONS FOR PRISTINE GRAPHENE

Throughout the manuscript, the following lattice parame-
ters are assumed: The lattice vectors of a pristine unit cell of
graphene are defined as

3 1>, (AD)

22
with a = 2.46 the lattice constant (except for DFT calcula-
tions). With the corresponding reciprocal-lattice vectors as

2 1 27 [ 2
b= —,-1), b,="(-",0),
: a<¢§ ) ? (ﬁ)

a =d(0,—1), aZ=a<

(A2)

035139-10



MIRROR SYMMETRY BREAKING AND LATERAL STACKING ...

PHYSICAL REVIEW B 104, 035139 (2021)

the positions of atoms in the unit cell are 7, = (0, 0,0) and

7, = (a/~/3,0,0).
The Dirac Hamiltonian for a layer rotated by an angle 6
with respect to a fixed coordinate system is

0 ei(ﬁk—e)
h(k,@):thk<e_,-(9k_9) ) ) (A3)

The six linear combinations of reciprocal-lattice vector with
the smallest magnitude {Gy, ..., Gg} are defined as

4 (1 3 4z 1 V3
o 7) @) e

Gs = 4_’;(_1,0), Gy = 4—”<_1 _*/—§>, (A5)
a

v 3a 2’ 2
4 (1 3 4
Gs=—=-,— ), Gg=—(1,0). A6
5 ﬁa(Z 2> 6 ﬁa( ) (A6)

Fourier components of coupling elements f‘ff/;!G between
aligned layers and equally Fourier components of the spacial
variation of site energies éé, ¢» Which allow the construction of

i Al —iG-d
= Y il e (A7)
G={0,G....,Ge}
and
amy= Y el g, (A8)
G={0,G.....Ge}

are listed in Tables II and III. The tables list the zeroth ( fB)
and first ( fAleﬁ) intralayer (see Table II) and interlayer (see
Table IIT) Fourier component. All other components can be
deduced from phase relations listed in the table captions.

APPENDIX B: DFT CALCULATIONS

All DFT calculations were performed using the Vienna ab
initio simulation package (VASP) [62] within the local density
approximation and the associated equilibrium lattice constant
of a = 2.449 A (note that this deviates from the values used
elsewhere in the manuscript) and a periodic image separation
of 25 A. We used a Monkhorst k-point grid of 25 x 25 x 1.
We sampled the configuration space on a 10 x 10 x 1 grid
via successive lateral translations of the corresponding twisted
layer by {5 along each lattice vector direction. We performed
100 pristine trilayer graphene calculations for each stacking
configuration. At each stacking configuration, we allowed
atomic positions to equilibrate along the out-of-plane axis.
Subsequently, we transformed and truncated (to p, orbitals)
each resulting pristine cell Hamiltonian into real space using
WANNIER9O [63,64]. To obtain explicit parameters for the

continuum model, we deduce effective Fermi velocities and
Fermi alignments using calculations where interlayer cou-
pling elements are neglected.

APPENDIX C: DRUDE WEIGHT

In the absence of disorder, the Drude weight tensor of a
metal [58],

(C1)
is related [65] to the ac-dependent conductivity [0, (@)] by

D,, = m lim wImo,,(w),
w—0

i
(@) = Dy [3(@ ¥ E] +o ). (C2)
In the case of band metal, with Kohn’s formula [58], the Drude
weight becomes the Fermi volume integral:

dk afk 1 828nk
D,, =27 Ok ,
= Ce Z/BZ Qr )l e 2 ok, ok,

with dfx/de = df (e, u)/d€k, Where f(e.x, ) is the
Fermi-Dirac occupation function, u is the chemical potential,
hi is the reduced Planck constant, and ¢, is the band energy.
By means of an integration by parts, the Drude weight in two
dimensions may be calculated using band velocities via

2
e afk
D/Lv = E ;/Bzdkgvmvw,

where the velocity v,, may be calculated with the velocity
operator v,, = (nk|0H/dk,|nk). In the case of C3, symme-
try, the tensor of Drude weight must include this symmetry
according to Neumann’s principle [59]. The representation of
Cs, symmetry is

(C3)

(o2))

2r 2

cos 5 —sing 0
RQ2n/3)=|sinZ cosZ 0 (C5)
0 0 1

With the tensor of Drude weight after the operation of
R(27 /3) denoted as D;w, the invariance of the components
of the tensor implies that D;w = D,,, that is,

D;w = awavﬂDalg = D;w’ (C6)

using Einstein’s convention, with a,, and a,g the matrix
element of R(2m/3). The tensor of Drude weight with Cs,
symmetry is thus

Dy 0 O
p=[0 D. O (C7)
0 0 D
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