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Particlelike valleytronics in graphene
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Particlelike scattering states allow for noiseless transport through quantum dots by closely retracing bundles
of classical trajectories. We identify such raylike states for electron transport through graphene ribbons. Re-
markably, we find that these quasiclassical scattering states can be unambiguously associated with well-defined
quantum numbers of the valley degree of freedom specific to graphene. Trigonal warping—i.e., deviations
of the band structure from a perfectly isotropic two-dimensional Dirac equation due to the hexagonal lattice
structure—results in preferred propagation directions and scattering time delays that depend on the valley the
particlelike wave travels in. By implementing a truncated mode basis of Bloch states, we achieve simulations of
micrometer-sized quantum dots starting from an atomic-scale tight-binding Hamiltonian.
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I. INTRODUCTION

Coherent and ballistic electron transport through meso-
scopic and nanoscopic structures is fully characterized by
the scattering (S) matrix of quantum dynamics. Within the
Landauer-Büttiker description of quantum transport [1,2],
conductance and conductance fluctuations can be extracted
from elements of the S or T (transmission) matrix. Two-
dimensional (2D) open quantum dots with hard-wall confine-
ment, often referred to as quantum billiards, have served in the
past as a paradigm for studying the crossover from quantum
to classical ballistic transport [3–6]. When the system size is
less than the elastic mean free path λe, the shape of the wall
directly determines the motion of electrons and the geometry
of the boundary is strongly reflected in transport properties.
For ultraclean graphene sheets sandwiched between boron
nitride, λe may well exceed several microns [7]. We study
in the following transmission through micron-sized quantum
dots realizable in experiments.

Particlelike scattering states have been identified in trans-
port through billiards that mostly feature regular dynamics
[8]. They are capable of accurately retracing bundles of topo-
logically equivalent classical trajectories [9] whose volume
in phase space is sufficiently large as to accommodate one
or more quantum states. Particlelike or, more precisely, ray-
like states can be viewed as complementary to “scarred”
states identified in chaotic cavities [10,11]. While both classes
of states feature clear imprints of classical trajectories on
wave functions, the underlying mechanism for their formation
and resulting properties are fundamentally different. Scars,
meanwhile also investigated in graphene billiards [12,13], are
associated with isolated, unstable periodic orbits in bound
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chaotic systems. In open cavities, coupling of these trajec-
tories featuring infinite dwell times to the leads is mediated
only by dynamical tunneling or diffractive scattering. Scarred
states, therefore, give rise to narrow long-lived resonances
and in general do not contribute significantly to transport
through open cavities. By contrast, the classical ray states
we explore in the following directly connect the open leads
and therefore prominently contribute to transport [Fig. 1(e)].
The trajectories associated with the ray states are not isolated
but form bundles in regular systems covering a sizable vol-
ume in phase space in units of hM (h: Planck quantum, M:
number of degrees of freedom) sufficient to accommodate
noise-free scattering states. Unlike for scars, the hallmark of
trajectories associated with ray states are their short dwell
times inside the cavity contributing to the smooth nonresonant
continuum.

Particlelike or raylike scattering states have been identified
for free-particle motion with quadratic dispersion E ∝ k2, and
for deBroglie wavelengths λD small compared to the linear
dimension of the lead width W , λD � W (see Fig. 1). In
this regime a large number N of scattering channels is open,
N = 2W/λD � 1, allowing for a suitable coherent superpo-
sition of incoming scattering channel functions that form
quasiclassical scattering states. Such raylike scattering states
hold the promise of novel applications including noiseless
transport and low-energy geometric electron optics in con-
densed matter. In the present work we generalize the concept
of particlelike scattering states to transport through graphene
quantum dots and to micrometer-scale graphene ribbons. In
this context, graphene is of particular interest for several rea-
sons [14]: the free-particle motion inside the quantum dot is
replaced by Bloch wave packets on a hexagonal lattice, the
quadratic dispersion is replaced by a linear dispersion E ∝ k
in the vicinity of the Dirac point making thereby closer contact
to ray optics, and the electronic band structure of graphene
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FIG. 1. Two-dimensional rectangular scattering structures with
length L and width D attached to entrance and exit leads with width
W defining the asymptotic scattering channels. Graphene ribbon
(a) with bulk Dirac cone band structure (b), and square lattice (c) with
bulk parabolic band structure (d). Typical classical paths representing
bundles traversing the structure are shown in (e): the direct transmis-
sion path (A), the direct reflection path (B), and a transmission path
(C) which scatters multiple times at the boundaries before reaching
the exit. (f) The corresponding classical dwell times τcl for the path
bundles depicted in (e) in units of the lower bound for the transit time
τ0 = L/v as a function of L/D.

features an additional valley degree of freedom associated
with the two nonequivalent corners K and K ′ of the Brillouin
zone. We explore the influence of this discrete quantum num-
ber on the quasiclassical ray states.

Key property of particlelike scattering states is that they are
eigenstates of the Eisenbud-Wigner-Smith (EWS) time-delay
operator [15–17]

Q(E ) = −ih̄S†(E )
∂

∂E
S(E ), (1)

with eigenvalues τEWS closely approximating the transit time
of classical particles traveling through the quantum dot along
the corresponding ray. Moreover, they are eigenstates of the
transmission operator T̂ with eigenvalues near the endpoints
of the spectrum, i.e., either t j = 1 (perfect transmission) or
t j = 0 (no transmission at all but perfect reflection).

In this work we calculate the spectrum of the time-delay
operator for large rectangular graphene quantum dots with
a width D of up to 1 μm. Calculating the scattering matrix
for such large-scale structures starting from an atomic tight-
binding Hamiltonian requires the implementation of a new
truncated mode basis expansion. We find that quasiclassical
trajectory bundles can be doubly occupied by ray-scattering
states with different valley quantum numbers. Despite the size
of the structure, the atomistic scale—via the orientation of the
graphene lattice—does play an important role in determin-
ing the resulting scattering dynamics. Trigonal warping—the

deviation of the band structure of graphene from a perfectly
isotropic Dirac cone at larger energies [14]—leads to pro-
nounced differences in dwell times in the two valleys and
to a preference for certain propagation directions. In order
to relate the real-space trajectory bundles to features of the
band structure we employ a Husimi representation [18] for
ray-scattering states. It reveals the role of the valley degree of
freedom and the origin of the strong directional dependence.
For numerical efficiency we focus here on rectangular ribbons
well described by our truncated mode basis expansion.

This paper is organized as follows: in Sec. II we briefly
review the atomic-scale tight-binding description of graphene
employed in the present simulation and the methods for
constructing and analyzing ray-scattering states. The new
truncated mode basis expansion which enables simulations of
micrometer-sized graphene ribbons and dots is introduced in
Sec. III. Results for the spectrum of a time-delay operator and
of ray states are given in Sec. IV where we also compare the
spectrum for the hexagonal lattice of graphene with those for
a square lattice with quadratic dispersion near the � point. We
conclude with a short summary and outlook in Sec. V.

II. TIGHT-BINDING APPROACH AND TIME-DELAY
SPECTRA

We model the two-dimensional scattering structures
(Fig. 1) by a tight-binding Hamiltonian of the form

H =
no∑
i

εiĉ
†
i ĉi +

∑
〈i, j〉

γi j ĉ
†
i ĉ j, (2)

with ĉ†
i (ĉi ) the creation (annihilation) operators of a

quasiparticle at the atomic site i with position ri, εi =
〈i|H |i〉 the on-site (diagonal) matrix elements. For graphene
[Fig. 1(a)] we include third-nearest neighbor tight-binding
coupling [19], with εi = −0.126 eV and hopping matrix el-
ements γi j = 〈i|H | j〉 parametrized by the distance |ri −
r j | between sites. The third-nearest neighbor approach is
parametrized by three couplings γi between ith nearest neigh-
bors (i = 1, . . . , 3), γ1 = −3.145 eV, γ2 = −0.042 eV, γ3 =
−0.35 eV. These parameters are derived from ab initio DFT
simulations of the graphene band structure [20]. They ac-
curately reproduce the band structure near the Dirac point
as well as the trigonal warping correction at higher energies
[schematically shown in Fig. 1(b)]. The finite value of the
on-site matrix element ensures that the Dirac point remains
at E = 0 after including all interactions. Only in first-nearest-
neighbor tight-binding approximation does the on-site matrix
element vanish due to the perfect electron-hole symmetry
of the band structure in this limit. For a comparison with
transport through a structure featuring quadratic dispersion
we also simulate a ribbon built up from a square lattice
[Figs. 1(c) and 1(d)]. Here we use a simple nearest-neighbor
tight-binding parametrization with nearest-neighbor hopping
γ1 = h̄2/(2m∗a2) with a the lattice spacing and m∗ the effec-
tive mass.

We consider rectangular geometries of length L and width
D attached to leads of width W on the top left and lower right
part of the ribbon [Figs. 1(a), 1(c) and 1(e)]. For graphene,
zigzag edges are along the ribbon (x axis), armchair edges
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perpendicular to it (y axis). The formation of quasiclassical
particlelike or ray scattering states requires relatively large
quantum numbers, i.e., a large number of open modes in the
leads,

N ≈ 4W/λD = 2W k/π � 1, (3)

corresponding to relatively high energies, as E scales for
graphene as E = vF h̄k ≈ π h̄vFN/(2W ). Consequently, qua-
siclassical ray states can be increasingly accurately formed
for N � 1. Therefore, simulating particlelike states requires,
on the atomic scale, wide leads such that the electron wave-
length is much larger that the atomic spacing (λ � a), yet
much smaller than the linear dimension of the structure (λ �
W, D). We consider graphene ribbons with widths D = 60 nm,
250 nm, and 1 µm and lengths ranging from L = 0 to L =
5.5 D. In the simulations presented below we choose D = 2W
(see Fig. 1). We typically consider energies where 99 trans-
verse channels are open in the leads. For the system with
parabolic dispersion used for comparison we choose the effec-
tive mass accordingly. For the narrowest ribbon with D = 60
nm and a lead width W = 30 nm at an energy of E = 1.5 eV
above the Dirac point the number of open modes is reduced to
N = 69.

Typical classical trajectories representing bundles con-
tributing to transmission (A,C) and reflection (B) are shown
in Fig. 1(e). Each bundle comprises the ensemble of trajec-
tories that can be generated by a continuous variation of the
y coordinate of the starting point at the entrance lead and by
the variation of the injection angle θ subject to the constraint
that the topology of the representative trajectory such as di-
rect transmission (A) or single-bounce reflection (B) remains
invariant.

Our goal is now to search for those quantum scattering
states whose EWS time delays closely corresponds to the
classical dwell times of corresponding bundles inside the
structure. To this end, we calculate the spectrum of the EWS
time-delay matrix given in terms of the S matrix [Eq. (1)],
where S is a 2N × 2N matrix consisting of four N × N blocks:

S(E ) =
(

r(E ) t ′(E )
t (E ) r′(E )

)
, (4)

denoting the reflection (r) and transmission (t) matrices for
flux incoming from the left (unprimed) or right (primed) lead
(see Fig. 1). The corresponding block structure of the time-
delay matrix Q is written as

Q(E ) =
(

Qll (E ) Qrl (E )
Qlr (E ) Qrr (E )

)
. (5)

In Eq. (5) Qll (E ) and Qrr (E ) denote the time-delay matrix for
scattering states purely incoming either from the left (ll) or
right (rr) while the off-diagonal blocks Qlr and Qrl account
for superpositions between left and right incoming scattering
states.

Quasiclassical ray states are now eigenstates of Q,

Q(E )
∣∣τEWS

i

〉 = τEWS
i

∣∣τEWS
i

〉
, (6)

with the additional constraint that the contribution from non-
classical superpositions between states incoming from the left
and right vanish. Focusing on the following (without loss of

FIG. 2. Left panels (a) and (c): real space wave function prob-
abilities of selected Eisenbud-Wigner-Smith time-delay operator
eigenstates for the 1 μm wide and 5 μm long graphene ribbon.
The Husimi distributions (right panels) are evaluated at x = L/2,
averaged over y, as indicated in (a) and (c) by the red dashed line.
(b) and (d) Husimi distribution of the corresponding wave functions
on the left in black, with contour lines (orange) of bulk band structure
at E = 0.15, 0.59, 1.49 eV. The black spots (see arrows and magni-
fication) represent more than 90% of the total weight of the strongly
localized Husimi distribution.

generality) on eigenvectors of Eq. (6) purely incoming from
the left this implies

(
Qll (E ) Qrl (E )
Qlr (E ) Qrr (E )

)(∣∣τEWS
i

〉
l

0

)
= τEWS

i

(∣∣τEWS
i

〉
l

0

)
(7)

and hence

Qll (E )
∣∣τEWS

i

〉
l

= τEWS
i

∣∣τEWS
i

〉
l
, (8a)

∣∣Qlr (E )
∣∣τEWS

i

〉
l

∣∣ =: χiτi = 0, (8b)

where we have defined the dimensionless null-space norm χi

as a quantitative indicator of how well Eq. (8b) is numerically
fulfilled for a given eigenstate i [8]. The constraint that |τEWS

i 〉
lies in the kernel of Qlr (E ) [Eq. (8b)] also implies that those
eigenvalues of the N × N transmission matrix T = t†t , ti, i =
1, . . . , N corresponding to ray states are either close to ti = 0
or ti = 1 representing noiseless states [21]. Only a (typically
small) subset of the eigenstates of Eq. (8a) will satisfy the
additional condition of Eq. (8b). The latter provides a measure
χi on how “particlelike” they are. Only quantum states with a
small χi [Eq. (8b)] correspond to states that can be accom-
modated by the volume of phase space occupied by bundles
of classical trajectories and pass through the scattering struc-
ture with collimated raylike wave fronts (see Fig. 2 below).
Numerically we expect χ � 1 for particlelike states. We find
χ < 0.05 for states with eigenvalues at the classical runtimes
of the three bundles (A,B,C), while on average 〈χ〉 ≈ 0.2. The
remaining eigenstates of Eq. (8a) lack a clear association with
specific classical path bundles but rather display seemingly
random wave patterns [8].
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The eigenvalues of Eq. (6), the eigentime delays (or dwell
times) τEWS

i satisfy the sum rule [22]

ρ(E ) = 1

h̄

∑
i

τEWS
i = 1

h̄
Tr Q, (9)

with ρ(E ) the density of states of the scattering system. This
sum rule obviously constraints possible fluctuations in the
dwell time spectra.

III. THE TRUNCATED MODE BASIS EXPANSION

The challenge is now to calculate S(E ) [Eq. (4)] and Q(E )
[Eqs. (1) and (5)] for these large-scale structures contain-
ing millions of atomic sites. Since the flux through such a
scattering structure is expected to be carried by transverse
modes similar to those for ribbons of the given width D of
infinite length, Bloch states are a well-suited basis for such
calculations. However, for a given width D and energy E the
number of Bloch states with arbitrary and, in general, complex
k is as large as the number of tight-binding orbitals. Therefore,
a truncation of this basis to a much smaller sized set of
functions is required to render the calculation feasible. Key
to this reduction is that the flux is carried predominantly by
propagating rather than by evanescent modes. Accordingly, in
the absence of short-range defects, Bloch states with (almost)
real wave vectors with | exp(ikx)| ≈ 1 dominate the scattering
problem. Guided by this criterion we truncate the Bloch basis,
thereby substantially reducing computational cost. To obtain
the desired reduced basis set, we solve the sparse eigenprob-
lem of the infinite waveguide [23] iteratively for selected
eigenvalues and eigenstates.

We consider a waveguide formed by a supercell contain-
ing Nc atomic sites infinitely repeated in x direction. The
width of this supercell in y direction defines the width of
the waveguide. Tight-binding couplings between two sites
within one unit cell are described by an Nc × Nc matrix H0,
and coupling to neighboring unit cells by Nc × Nc matrices
HL and HR = H†

L . We choose the cell size sufficiently large
as to restrict couplings to neighboring supercells. For up to
third-nearest-neighbor tight binding, a single armchair chain
of carbon atoms can serve as the supercell. Starting from
such a single armchair chain with, e.g., the length of 1 μm
containing Nc ≈ 10 000 atoms a zigzag graphene ribbon of
the same width can be built up by periodic repetition of the
armchair chain in the direction perpendicular to the chain.
The Hamiltonian of the entire waveguide can be schematically
written as

H =

⎛
⎜⎜⎜⎜⎜⎝

. . .

H0 HL

HR H0 HL

HR H0
. . .

⎞
⎟⎟⎟⎟⎟⎠

. (10)

The energy eigenvalue problem H
 = E
 is solved with a
Bloch ansatz,


 = (. . . , ψ−�x, ψ0, ψ�x, . . .)
T , ψ�x = eik�xξ (k), (11)

with χ (k) ∈ CNc the vector of expansion coefficients in tight-
binding orbitals defining the periodic part of the Bloch ansatz

on the unit cell. Assuming HL to be invertible, Eqs. (10) and
(11) result in a linear eigenvalue problem [23] of size 2Nc ×
2Nc, i.e., of size 20 000 × 20 000 for a 1 μm wide ribbon,

(−H−1
L (H0 − E ) −H−1

L HR

1 0

)(
η

ξ

)
= λ

(
η

ξ

)
. (12)

The block structure of Eq. (12) results from rewriting a
quadratic eigenvalue problem as a linear problem of double
the size with η = λξ . It should be noted that the block struc-
ture Eq. (12) is entirely unrelated to the block structure of
Eq. (8). The block structure in Eq. (12) is identical to the
one appearing in approaches for parabolic dispersion [24],
with the general tight-binding matrices H0 and HL,R replacing
the simpler tridiagonal matrices. If HL is noninvertible, one
has to solve a generalized eigenproblem or has to eliminate
the surplus dimensions using a singular value decomposition
[25]. Equation (12) is typically solved for all 2Nc eigenvalues
and corresponding eigenvectors, which allows for a straight-
forward representation of the scattering problem [23,24,26].

We are interested here in the case where the number of
orbitals (or sites) is so large as to render such an approach
unfeasible. For the present problem only those states with
eigenvalues featuring a magnitude close to unity are phys-
ically relevant for transport. We can therefore reduce the
numerical problem by focusing on finding all eigenvalues of
Eq. (12) close to the unit circle. Arnoldi iterations using mul-
tiple shifts have been suggested as a possible approach [27].
However, depending on the distribution of the propagating
eigenvalues on the unit circle, one might need a prohibitively
large number of shifts to find all Nopen open modes. Instead,
we employ a Davidson iteration [28] to locate the eigenvalues
close to |λ| = 1. The algorithm involves the iterative and
approximate solution of

(A − λi1)(vi − ri ) = 0

for the residue ri which constitute the “missing” complement
for a set of m guesses for the eigenvectors vi of A. The
approximate eigenvalues λi are obtained by projecting A onto
the basis of size 2m spanned by the vi and ri. In each iteration
step we keep m (here we choose m = 8) eigenvalues λi closest
to the unit circle, with smallest |Re[log(λi)]|. The search space
of the vi and ri is always kept orthogonal to eigenvectors
already converged. To accelerate the convergence we switch
to an inverse iteration whenever the Jacobi-Davidson residuals
are low and the eigenvalues have been successfully located.
Factorizing a sparse matrix is still easily possible for the
system sizes considered here. With this eigensolver we can ef-
ficiently identify propagating (and weakly evanescent) modes
of any tight-binding Hamiltonian of (almost) any size. More
generally, this approach successfully locates eigenvalues of
a matrix in nontrivial regions of the spectrum. We run the
algorithm until we have assembled our truncated mode basis
(TMB) using a number NTMB of Bloch states with the smallest
imaginary |Imk|, i.e., the open and most weakly evanescent
modes. In the present case we use NTMB = 2Nopen � Nc since
weakly evanescent modes can significantly contribute to trans-
port in graphene [29–32].

Since the Green’s function of the ribbon should be domi-
nated by the open modes, the truncated set of Bloch states we
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have determined could directly be used to solve the scattering
problem. However, such an approach, while possible, yields a
truncated scattering problem that is no longer unitary. While
it would seem that the impact of the neglected modes is small
(and could be made negligible by further increasing NTBM), we
find that, in particular, energetically close to resonances, the
resulting transmission features unphysically large values. The
underlying reason is the difficulty to enforce the orthogonality
condition for the Bloch eigenstates ηi. Since the eigenproblem
of Eq. (12) is non-Hermitian, one has to distinguish be-
tween left-sided and right-sided eigenvectors. If only a subset
of right-sided eigenvectors is calculated, the corresponding
orthogonal complement η̄ with η̄i · η̄ j = δi j cannot be unam-
biguously determined. This is particularly problematic when
evaluating the energy derivative of the scattering matrix to
determine the Wigner-Smith operator. To eschew this problem
entirely, and to obtain an exactly unitary scattering matrix, we
project the original scattering problem expressed in terms of
the tight-binding orbital basis of the Hamiltonian Eq. (2) onto
the orthogonalized and truncated mode basis {vi} for each
supercell,

(H0)i j = 〈vi|H0|v j〉, i = 1, . . . , NTMB (13)

and, correspondingly, for HL and HR. The resulting matrices
H define a new scattering problem of much smaller dimen-
sions that can now be solved exactly, providing a unitary
solution. A similar mode basis approach has been previ-
ously suggested [33], though without truncation. We solve the
scattering problem within the reduced basis via the standard
recursive Green’s function algorithm [19,25]. With the present
approach we are able to calculate the S and Q matrices in-
troduced above for large structures from atomic-scale input
[Eq. (2)] provided they can be assembled from rectangular
building blocks (Fig. 1).

IV. RESULTS OR THE TIME-DELAY SPECTRUM OF
RAY-SCATTERING STATES

Short trajectories with correspondingly short dwell times
in the quantum dot (Fig. 1) are expected to feature ray scat-
tering states most prominently as their associated bundles
can occupy a large volume in phase space [9]. We therefore
search for the eigenstates of Qll (E ) with small eigenvalues
τEWS. We label the eigenvalues τEWS

t/r,b by their exit channel (r
reflected, t transmitted) and by the number of bounces b at the
internal walls. The dwell time of the classical path A (Fig. 1)
corresponds to the eigenvalue τEWS

t,0 , of path B to τEWS
r,1 and of

path C to τEWS
t,2 .

An additional “quantum” number will now be added as
we find the smallest eigenvalue τEWS

t,0 to be (nearly) doubly
degenerate. The corresponding pair of eigenstates (Fig. 2)
closely retraces the ray for direct transmission through the
structure [Fig. 1(a)]. To unravel the origin of this eigentime
degeneracy, we analyze the physics of these ray-scattering
states in phase space in terms of their Husimi distributions
[18]. The Husimi distribution of a wave function in site (or

kx (nm−1) kx (nm−1)

k
y

(n
m

−
1
)

FIG. 3. Vector field of group velocities (gray arrows) near the K
valley (a) and the K ′ valley (b). In orange are the energy contours at
the energies E1 = 0.15 eV, E2 = 0.59 eV, and E3 = 1.49 eV which
we consider in our simulations.

coordinate) representation {ψ j} is given by

H[ψ](r0, k0; σ ) = 1

π

∣∣∣∣∣
∑

j

ψ j exp(
r j −r0
4σ2 ) expik0r0

∣∣∣∣∣
2

, (14)

where the sum runs over the site index j and ψ j is
the wave-function amplitude at tight-binding site j. The
Husimi distribution H[ψ] provides a visualization of the
quantum-mechanical scattering states in terms of a positive
semi-definite probability density at the coordinates (r0, k0) in
the classical phase space. σ defines the width of the minimum-
uncertainty wave packet the underlying Wigner distribution
[34] is averaged over. For quantum billiards, H[ψ] is a four-
dimensional distribution. By fixing the x coordinate to the
center of the structure, x = L/2, and integrating H[ψ] over
all y, we obtain a reduced Husimi distribution in k space that
characterizes the interior of the scattering structure which is
least affected by diffractive scattering at the lead openings.
We find the projected Husimi distribution to be well local-
ized on the energy contours of the bulk band structure of
graphene corresponding to the scattering energy E [Figs. 2(b)
and 2(d)]. More remarkably, this distinct point of localiza-
tion of the Husimi distribution of the particlelike state on
the contour is determined by the requirement that the ori-
entation of the group velocity vector vg = ∂kE (k) (Fig. 3)
matches the propagation direction of the classical particle.
By contrast, the Husimi distribution of states which do not
propagate along classical trajectories or of states which do not
fulfill Eq. (8b), is spread out over large portions of the energy
contour. Furthermore, the Husimi representation helps us to
clearly identify the origin of the pair of the (near) degenerate
ray scattering states of Fig. 2: the two time-delay eigenstates
reside on different Dirac cones near K and K ′. These qua-
siclassical particlelike or raylike states unambiguously carry
also the information on the valley quantum degree of free-
dom. Thus, the eigenstates of the time-delay operator feature
also well-defined valley quantum numbers |τEWS

t,0,σ 〉, with σ =
K, K ′. The eigentime splitting between the two states implies
that the particle can be transported either in the “faster” valley
with a larger group velocity and slightly lower dwell time
or in the “slower” valley with smaller group velocity and,
correspondingly, larger dwell time.
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FIG. 4. Left panels: real space wave function amplitudes of se-
lected Eisenbud-Wigner-Smith time-delay operator eigenfunctions
for the 60 nm wide ribbon. The quantum states (a), (c), and (e)
propagate along the classical trajectories (A), (B), (C) of Fig. 1(f).
The Husimi distributions (right panels) are evaluated at x = L/2,
averaged over y, as indicated by the red dashed line in (a), (c), and
(e). The Husimi distribution corresponding to the wave functions
are plotted in black and the energy contour lines of the bulk band
structure in orange. For raylike states, the Husimi distribution is
strongly localized with the black spot representing 90% of the weight
of H[ψ](k0). In the reflecting state (c) and (d), a small admixture of
a transmitting state (b) is visible in the Husimi distribution [bottom
right arrow in (d)].

At a relatively high scattering energy of E = 1.5 eV above
the Dirac point well into the regime of pronounced trigonal
warping of the band structure, the sensitivity of the ray-
scattering states to the valley degree of freedom becomes
enhanced (Fig. 4): the directly transmitting ray (A) [Fig. 4(a)]
resides now exclusively in the K ′ valley, i.e., |τEWS

t,0,K ′ 〉 since on
the corresponding energy contour of the K valley not enough
k space volume with the group velocity vector needed for
the direct ray can be found. Conversely, a significant k space
volume for propagation at an angle of 60◦ is available, which
results in a stable ray which is 4 times specularly reflected
(trajectory C) at the zigzag boundary as fastest state on the K
cone, i.e., |τEWS

t,4,K 〉 [Fig. 4(c)]. The preference for 60◦ injection
is an immediate consequence of the trigonal warping which
results in a strongly anisotropic group velocity distribution
(see Fig. 3). Even for longer ribbons, the fastest ray state in
the K valley always propagates at a 60◦ angle, making as
many bounces as required to reach the exit lead. By contrast,
the directly reflected ray (B) must undergo backscattering at
the armchair boundary. Unlike the zigzag boundary, the arm-
chair boundary couples the K and K ′ valleys. Consequently,
the one-bounce reflected ray is a coherent superposition of
the ray states |τEWS

r,1,K 〉 and |τEWS
r,1,K ′ 〉 living in different valleys.

Imperfections at the boundaries will likewise result in a mix-
ture of valley states for ray states that scatter at the boundary,
with superpositions determined by the precise reflection prop-
erties of the boundaries as well as the difference in group
velocities between the two valleys. Also scattering states that
do not fulfill the requirement of noiseless states [Eq. (8b)] are,
in general, not valley polarized. Avoiding a mixing of valley
states could be possible for sufficiently smooth boundaries
that lack the high Fourier components required to scatter
between valleys, as created, e.g., by electrostatic confinement
in the case of bilayer graphene [35].

To systematically study the variation of the particlelike
scattering states as a function of the energy of the scattered
particle E and the length L of the cavity, we focus now on
the statistical distribution of eigenvalues of the time-delay
operator Qll (E ) (Fig. 5). To remove the purely geometric
dependence on the path length we rescale all eigenvalues by
τ0 = L/v0 as in the classical case [see Fig. 1(f)] where now
v0 is the largest group velocity of all N open channel modes,
v0 = max(vg). For a comparison with the transport through
a quantum dot that features (near the � point) a quadratic
rather than a linear dispersion [see Figs. 1(c) and 1(d)] we also
calculate [Fig. 5(d)] the time-delay eigenvalue distribution
for a ribbon built from a material with a square rather than
hexagonal lattice. In Fig. 5 we have color coded the eigentime
distribution in the (τ/τ0, L/D) plane by their raylike charac-
ter. Raylike states with small null-space norm χ [Eq. (8b)]
appear purple (dark), nonclassical scattering states with large
null-space norm appear yellow (light). Obviously ray states
evolve continuously as a function of L/D approaching an
integer value of τ/τ0 with increasing L/D. This dependence
closely mimics the variation of the dwell time of classical
trajectories with L/D [Fig. 1(f)]. By contrast, the states with
large χ appear broadly and quasirandomly distributed forming
a “background.” They correspond to time-delay eigenstates
that cannot be unambiguously assigned a single classical path
bundle of phase space volume sufficient to accommodate at
least one quantum state.

To further elucidate the relationship between classical bun-
dles and raylike states, we focus now on the subset of ray
states (null-space norm χ < 0.25). We separate the eigentime
distribution according to their raylike (r, t ) and valley (K, K ′)
quantum numbers through color and symbol coding (Fig. 6).
The bounce number b can be inferred from the values of scaled
eigentimes. For the square lattice, eigenvalues are only color
coded by r/t as the valley degree of freedom is absent. The
one-bounce classical reflection path (B) (Fig. 1) at τ/τ0 = 2
is present in the time-delay spectra for all L/D � 0. The
direct transmission path (A) near τ/τ0 = 1 as well as the
two-bounce path near τ/τ0 = 3 appear for obvious geometric
reasons (Fig. 1) only for L/D > 0. The histograms of the time-
delay distribution generated by projecting all eigenvalues onto
the τ/τ0 axis also shown in Fig. 6 feature clearly visible
peaks corresponding to prominent few-bounce bundles. The
most important difference between graphene ribbons of dif-
ferent width D [Figs. 6(a)–6(c)] and the square-lattice ribbon
[Fig. 6(d)] is the splitting of these peaks by the valley degree
of freedom. States propagating in one valley are consistently
slower than states in the other valley. Their different dwell
times are due to different group velocities 1/h̄ · ∂kE , resulting
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FIG. 5. Scaled Eisenbud-Wigner-Smith time-delay eigenvalues τ/τ0 as a function of cavity length. For a comparison the time-delay
spectrum for a ribbon with that of a square lattice is shown in (d). (a) E = 0.15 eV with D = 1 μm, (b) E = 0.59 eV with D = 250 nm,
and (c) E = 1.5 eV with D = 60 nm. Color scale corresponds to the null-space norm χ , Eq. (8b), see color bar.

from trigonal warping. It is worth noting that the variation of
the splitting with D [Figs. 6(a)–6(c)] is not a geometric effect
but a band structure effect resulting from probing different
regions of trigonal warping as E varies with D for a fixed
number of open channels.

The valley splitting of the eigentimes is already a 5 %
effect even at relatively low energies of E = 150 meV.
At higher energies E = 0.59 eV [D = 250 nm, Fig. 6(b)]
states in one valley are about 1.4 times slower than in the
other valley. More modes appear in the faster valley indi-
cating that more phase space volume is available. For even
larger energies of E = 1.5 eV [Fig. 6(c)] the peak associated
with the “slower” valley has almost completely disappeared
because of the mismatch with the group velocity vector
required for the direct transmission path (see Fig. 4). In-
stead, time-delay eigenstates near τ/τ0 = 2 and near τ/τ0 =
4 are associated with multibounce bundles contributing to
transmission and reflection, respectively. These rays appear
periodically as a function of L/D whenever trajectories mul-
tiply specularly reflected with 60◦ at the zigzag boundary can
reach the exit lead. The propensity for 60◦ scattering is a
direct result of band structure anisotropy as trigonal warp-
ing results in three highly stable propagation directions per
valley.

While a subset of eigenvalues τEWS, in particular in the
lower part of the time spectrum, evolve continuously as a
function of L/D in accord with the dwell time of classical
paths, the behavior of most other, in particular larger, eigen-
times appears to be random. Those states do not propagate

along classical paths and fail to fulfill Eq. (8b). The seemingly
random time-delay distribution plays, however, a crucial role
for the set of all eigenvalues to satisfy the eigentime sum rule
of Eq. (9). In fact, we find that they obey a stronger sum
rule for the time-delay matrix restricted to incoming scattering
states from the left lead only,

ρ(E ) ≈ 1

h̄
trQ(E ) ≈ 2

h̄
trQll (E ) = 1

h̄

N∑
i=1

τEWS
i (E ). (15)

Remarkably, this holds for both the square lattice and for
graphene even though the corresponding densities of states
and typical dwell times fundamentally differ. For a square
lattice with quadratic dispersion near the � point, ρsquare(E )
scales in 2D as

ρsquare(E ) = m∗

π h̄2 , (16a)

i.e., is independent of E , while for graphene near the Dirac
point

ρgraphene(E ) = 2

πv2
F

|E |. (16b)

The classical dwell time τcl = s/v (with s the path length)
scales for quadratic dispersion with energy as

τ
square
cl ∝ v−1 ∝ E− 1

2 , (17a)
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FIG. 6. Scaled Eisenbud-Wigner-Smith time-delay eigenvalues τ/τ0 as a function of cavity length for the data sets of Fig. 5, however,
restricted to raylike states with eigenvalues χ � 0.25. Symbol color encodes transmission, reflection, and valley character (graphene only):
transmitted [light (K) and dark (K ′) green] and reflected [red (K) or orange (K ′)] states. Valley character is evaluated for the incoming wave,
and assigned to the dominant contribution. Right subpanels: histograms of the distribution of the time delays projected onto the τ/τ0 axis. The
time-delay eigenvalues associated with bundles result in a peak at the asymptotic (L → ∞) classical dwell times. Differences in dwell times
results in a peak splitting due to the valley degree of freedom [see (a) and (b)]. In (c), the 60◦ transmission path has the same transmission time
as the one-bounce reflection path, as expected classically.

while for ultrarelativistic Dirac particles with velocities inde-
pendent of energy,

τ
graphene
cl = const., (17b)

i.e., τ graphene
cl is independent of energy. As the eigentime values

of the raylike states as well as the average over all eigenvalues
〈τEWS〉 closely follow the classical predictions [Eq. (17)], it
is, at first glance, surprising that in view of Eqs. (16) and (17)
the sum rule [Eq. (15)] holds. Key to the resolution of this
apparent contradiction is the observation that the sum over
all τEWS and the average 〈τEWS〉 feature a different energy
dependence (Fig. 7). While the energy dependence of the
average 〈τEWS〉 [Figs. 7(a) and 7(b)] closely mirror the energy
dependence of the eigendwelltime of the raylike scattering
states [Figs. 7(c) and 7(d)], the sum [Figs. 7(a) and 7(b)]
displays a different energy dependence, which is consistent
with ρ(E ). This difference originates from the number of
open channels N and, thus, the number of terms in the sum
[Eq. (15)]. Since N ∝ k [see Eq. (3)], for quadratic dispersion
N scales as N square ∝ √

E while for the Dirac cone Ngraphene ∝
|E |. It is therefore the variation of the number of eigenvalues

as a function of energy, in particular the presence of those
with “randomly” distributed large dwell times, that enforces
the validity of the sum rule.

V. SUMMARY AND OUTLOOK

We have investigated an unconventional class of scatter-
ing states through open graphene quantum dots that closely
mimics beams of geometric electron ray optics. They emerge
as eigenstates of the Eisenbud-Wigner-Smith time-delay op-
erator in the subspace of incoming scattering states from the
source lead and are (approximately) noiseless. These raylike
states can be uniquely characterized by the exit channel they
approach (either transmission or reflection), by the number
of specular reflections at the internal walls of the cavity,
and, specific to graphene, by the quantum number associated
with the valley degree of freedom. Ray scattering states can
be constructed that propagate exclusively in one valley or
a coherent superposition of both valleys. This observation
raises the perspective of realizing particlelike valleytronics.
Generating raylike scattering states requires a large number of
open modes and, correspondingly, relatively high excitation
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FIG. 7. Time-delay eigenvalues as function of energy E for a ribbon of length L/D = 3. (a) and (c): graphene lattice with D = 1 μm;
(b) and (d) square lattice with D = 1000 points. (a) and (b): average scaled dwell time 〈τEWS〉 (orange) in units of the lowest possible transit
time τt,0,v = L/vg,max where vg,max is the highest group velocity in the square lattice at the highest injection energy E and the sum over all scaled
dwell times (red) normalized to the number of open channels N = 99 at the largest energy [E = 150 meV in (b)]. Insets show the number of
open modes N as a function of energy E . The color of the time-delay eigenvalues in (c) and (d) is chosen as in Fig. 5, displaying the null-space
norm χ , Eq. (8b).

energies. Forming suitable coherent superpositions of such
degenerate states in the entrance channel appear currently to
be the major challenge on the way to their realization. Optical
excitation by shaped pulses in biased structures might be a
promising avenue.

Trigonal warping of the Dirac cones in the band structure
of graphene is found to play an important role in the val-
ley selectivity but also in the directional preference and the
speed with which particlelike transport through the graphene
ribbon proceeds. Comparison with transport through a rib-
bon assembled from a square lattice featuring a quadratic
dispersion shows that the typical eigentime delays τEWS fea-
ture a very similar scaling with the length of the ribbon but
a strongly different scaling with energy. For both systems
we find the sum rule for eigentime delays to be satisfied
for the time-delay operator restricted to the subspace of
incoming scattering from one lead. The present method al-
lowing simulation of micrometer-sized devices starting from
a atomic-orbital based tight-binding Hamiltonian is currently
applicable for structures built-up from rectangular building
blocks. It can be applied also to other ribbons featuring a
hexagonal lattice and trigonal distortion of the band structure,
in particular bilayer graphene, where a similar nonisotropic
dynamics as the one investigated here is expected to un-
fold. Future extensions to other geometries can be envisioned
as well.

Experimentally preparing “pure” eigenstates of the time-
delay operator appears currently an experimental challenge.
Nevertheless, this newly identified class of states is expected

to play a key role in the analysis of charge transport, for
example in optically excited graphene structures [36]. The
electronic excitation by an ultrashort optical pulse will create
wave packets that can be conveniently expanded in terms
of a superposition of such time-delay eigenstates rather than
standard scattering states. Varying the location of pump and
probe, the current response observed at short pump-probe
delays is expected to be determined by the ray states with the
shortest dwell time. Along similar lines, graphene has been
suggested as material for high-frequency nanoelectronics (see,
e.g., Ref. [37]) with graphene nanotransistors operating at
frequencies of ≈155 GHz. The corresponding oscillation pe-
riods are of the same order of magnitude as the time-delay
differences between the two valley states we are reporting
here.

It should be emphasized that the appearance and key prop-
erties of the ray states with short Eisenbud-Wigner-Smith
time-delay eigenvalues do not critically depend on the real-
ization of perfect zigzag and armchair edges of the ribbon
assumed here for reasons of computational simplicity and
clarity. Graphene structures with atomically cleanly defined
edges can be synthesized by bottom-up approaches [38],
however fabrication of large-scale devices with precise edges
remains challenging. In fact, the direct ray with the shortest
time delay occupying the largest volume in phase space (ray
A in Fig. 1, see also Fig. 2) does not touch the (im)perfect in-
ternal boundaries of the cavity at all. More generally, a limited
number of diffractive scatterings at isolated point defects will
distort but not completely destroy the classical bundles that
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accommodate the quantum ray states. Furthermore, bilayer
graphene devices can be realized with electrostatic definition
of scattering geometries featuring smooth edges [35]. As the
key features of the ray states in graphene are determined by
the triangular distortion of the band structure in k space but
not by the geometry of the edges in real space, a similar non-
isotropic dynamics as observed here should unfold in bilayer

graphene where a pronounced triangular distortion appears at
very low energies [39].
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