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Half-integer Wannier diagram and Brown-Zak fermions of graphene on hexagonal boron nitride
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The moiré potential of graphene on hexagonal boron nitride (hBN) generates a supercell sufficiently large as to
thread a full magnetic flux quantum �0 for experimentally accessible magnetic field strengths. Close to rational
fractions of �0, p/q · �0, magnetotranslation invariance is restored giving rise to Brown-Zak fermions featuring
the same dispersion relation as in the absence of the field. Employing a highly efficient numerical approach
we simulate the magnetoconductance of bulk graphene on hexagonal boron nitride. The resulting Hofstadter
butterfly is analyzed in terms of a novel half-integer Wannier diagram for Landau spectra of Dirac particles. This
complex diagram can account for many features observed in the simulation and in experiment on a single-particle
level, such as spin and valley degeneracy lifting and a nonperiodicidy in �0.
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Ultraclean graphene in crystallographic alignment with
hexagonal boron nitride (hBN) forms large-scale moiré pat-
terns [1,2]. The area S ≈ 165 nm2 of one supercell is large
enough to reach the regime of one magnetic flux quan-
tum �0 = h/e per moiré unit cell already at B = 23.5 T.
A plethora of fascinating phenomena emerge such as Hofs-
tadter’s butterfly, the fractal energy spectrum of the lattice in
the magnetic field [3,4], Weiss oscillations [5,6] and Brown-
Zak oscillations [7–9], i.e., revivals of zero-field conductivity
at large magnetic fields periodic in 1/B. Indeed, Hofstadter’s
butterfly could recently be experimentally observed [10–17].
For exactly rational fractions p/q �0 of the magnetic flux
quantum corresponding to magnetic field values Bp/q =
p/q �0/S, the resulting Bloch wavefunction is strictly peri-
odic and magneto-translational invariance is restored. Bloch’s
theorem predicts new quasi-particles, so-called Brown-Zak
fermions (BZfs) [7–9], which travel, undeflected by the mag-
netic field, ballistically through the moiré superlattice [3,4,7–
9,15–24]. Inprints of BZfs in terms of periodic oscillations of
the conductance in 1/B (for fixed p), the Brown-Zak oscilla-
tions, have been observed up to high temperatures [15,16].

Hofstadter’s butterfly in graphene was previously dis-
cussed using Wannier’s formula [20] originally derived for
a system with parabolic dispersion. In the present work, we
calculate the full Wannier diagram for graphene on hexagonal
boron nitride based on an ab initio parametrization of the
supercell, including strain effects. We show that the linear dis-
persion of graphene leads to a modified half-integer Wannier
equation, Eq. (6), in line with the half-integer quantum Hall
effect in graphene. We further show that inclusion of spin- and
valley degeneracy lifting provides a consistent single-particle
explanation for several recent measurements [10–17].

The large supercell of graphene aligned on hexago-
nal boron nitride includes roughly ten thousand atoms
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rendering numerical simulations of the conductance challeng-
ing [25]. Calculations therefore have focused on the density of
states [26–28], a continuum k · p Hamiltonian [24,29], scaled
graphene [30,31], or on effective one-dimensional models [6].
Here we simulate transport through aligned (� = 0) graphene
on hexagonal boron nitride in a large-scale tight-binding (TB)
approach with the Hamiltonian

H =
∑
i, j

ti jcic
†
j +

∑
i

Vicic
†
i + gsμBŜ · B̂, (1)

hoppings ti j , on site-potential Vi, a Zeeman term with gs =
2 and Bohr magneton μB without further approximations.
The valley degree of freedom of graphene is implicitly con-
tained in the full TB treatment of the lattice and the spin
degree of freedom enters through the Zeeman term. We first
parametrize of the atomistic moiré lattice in configuration
space by a set of ab initio density functional theory (DFT)
calculations [32] of primitive cells [33,34]. We then use a
mechanical elasticity model to account for the structural ge-
ometry relaxation and induced strain on the graphene layer
by the hBN substrate [35,36] to build an ab initio derived
graphene/hBN structure (see Appendix A). We treat a realistic
750-nm-wide ribbon with zig-zag edges locally covered by
a Berry-Mondragon potential to suppress edge states [37].
We incorporate a magnetic field through a Peierls substitution
with gauge A = (B · y, 0, 0) to retain translational invariance
in x direction (i.e., along the ribbon).

We compute the band structure E (k) of the ribbon for
varying magnetic fields B from

(H0 + eik�xHI + e−ik�xH†
I )ψn = En(k) ψn, (2)

where H0 ∈ CN×N is the Hamiltonian of a “slice” of the
ribbon (N is the number of sites of the ribbon unit cell)
with a width in y-direction of 60 moiré unit cells containing
approximately N ≈ 8 × 105 sites and HI ∈ CN×N the inter-
action Hamiltonian between adjacent slices. The wave vector
k ≡ kx points in propagation direction. To efficiently solve the
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FIG. 1. Build-up of the graphene nanoribbon from periodic rep-
etition of a single building block, schematically. A “slice” with the
width of one moiré cell described by H0 is joined by the interaction
HI with adjacent identical slices to the right and left along the
propagation direction x of the Brown-Zak fermion (BZf). The width
W = 750 nm of the nanoribbon is in the y direction. The magnetic
field is oriented perpendicular to the plane of the ribbon.

large but sparse eigenvalue problem of Eq. (2) for eigenvalues
En(k) and eigenvectors ψn close to the Fermi edge at a large
number of k points, we use the Lanczos method [38,39] as
implemented by the ARPACK library [40]. One of the advan-
tages of the present approach is that its computational cost
scales only with N3

K (NK the dimension of the Krylov space)
rather than with the number of sites N3, NK � N (for details
see Appendix B).

For each Bloch eigenstate ψn the associated group velocity
in propagation direction follows from [41]

v(n)
g = 1

h̄

∂En(k)

∂k
= i�x

h̄
ψ†

n (HI e
ik�x −e−ik�xH†

I )ψn. (3)

To efficiently calculate the conductance as a function of the
energy E , we weight each Bloch state moving in +x direction
of the Brillouin zone, Eq. (2), with the appropriate group
velocity, Eq. (3). This weighted density provides an accurate
estimate for the conductance G(E ) by approximating the num-
ber of modes M(E ) at each energy,

G(E ) = e2

h
M(E ) ≈ e2

h

d

dE

∑
n:En<E

h̄v(n)
g �k (4)

with a k-point spacing �k (see Appendix B). Use of Eq. (4)
greatly reduces the computational cost as compared to calcu-
lations of G(E ) using the Landau-Büttiker formalism [42,43],
as it relies on matrix factorization instead of matrix in-
version. The resulting conductance G(E ) converges to the
Landau-Büttiker conductance at fine �k sampling for any
translationally invariant system (see Appendix B).

As our simulation is based on the band structure, the energy
axis can be readily transformed into the charge carrier density
by counting bands. We set n = 0 at the charge neutrality point
E = 0 of graphene and express n in units of n0 = 1/S, the
density of one electron per moiré cell. Likewise, the magnetic
field strength B is conveniently expressed in units of magnetic
flux quanta through one moiré supercell �/�0.

The large-scale band structure at zero field [Fig. 2(a)]
features Dirac cones with linear dispersion emanating from
the K and K’ points. The prominent gap at about ESD ≈
−h̄π/aSvg ≈ −120 meV is caused by the interaction of
the primary cones with the backfolded satellite Dirac (SD)
cones generated by the moiré potential the strength of which
also controls its width �m ≈ 20 meV. For a generic strong
magnetic field (B = 20 T, or �/�0 = 0.851) chosen not to
coincide with a low-order rational Bp/q, flat bands associated
with a multitude of Landau levels with small group veloci-
ties dominate the band structure [Fig. 2(b)], with a strongly
increased number of gaps opening compared to the field-free
case. The resulting density of states features pronounced sharp
peaks [Fig. 2(b)]. However, a further increase of the magnetic
field to B = 23.5 T corresponding to Bp/q = B1 (or � = �0)
leads to a dispersion [Fig. 2(c)] locally closely resembling the
original zero-field band structure [Fig. 2(a)]. Most notably, a
clustering of Landau subbands with linear slopes approximat-
ing the slope of the original Dirac cone vg ≈ vF is observed. It
signals the appearance of Brown-Zak fermions (BZfs) when
magneto-translational invariance for rational fractions of the
flux quantum is restored. The width in energy of the segments
over which the linear dispersion of BZfs is visible remains,
however, limited by the strength of the moiré potential and

FIG. 2. Band structure and density of states (DOS) in units of n0/eV of a 750-nm-wide graphene ribbon aligned on hBN in perpendicular
magnetic fields (a) B = 0 T (�/�0 = 0), (b) B = 20 T (�/�0 = 0.851), (c) B = 23.5 T (�/�0 = 1). The band structure is shaded according
to the group velocity relative to vF, the group velocity of the massless Dirac fermions in (a).
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FIG. 3. Density of states (DOS) map as a function of E and
B featuring multiple energy scales: ESD: The spacing between the
main Dirac cone and moiré induced replica, �

(L)
n−1,n: Landau gaps,

�v: Broken valley degeneracy, �s: Spin splitting, Vm: Broadening by
moiré potential near rational �/�0, Inset: Zoom into the intersection
between Landau level t = −1 of the main Dirac cone and the hole
satellite �/�0 = 1/2.

is of the order of 20 meV. The zero-field band structure and
its slopes are therefore only approximately recovered. This
perturbative effect of the moiré potential is fundamentally dif-
ferent from BZf spectra in pristine lattices where the zero-field
band structure is fully recovered [44]. At large B, the large
gaps between the lowest Landau levels are filled by only two
quantum Hall edge states, one for each propagation direction,
see, e.g., gapped regions at E ≈ 0.07 eV in Figs. 2(b) and 2(c).
Smaller gaps remain clearly visible for higher-lying Landau
levels [Fig. 2(c)].

The density of states (DOS) map (Fig. 3) in the E − B
plane not only features prominent Landau gaps easily rec-
ognized by the

√
B dependence of Landau levels of Dirac

particles, but also multiple energy scales in the presence
of both the moiré potential and the magnetic field: the
moiré-induced secondary Dirac cone at ESD ≈ −h̄π/aSvg ≈
−120 meV, the “broadening” of the Landau levels by �
20 meV at rational �/�0 (see, e.g., the inset near �/�0 =
1/2) caused by the formation of the Hofstadter butterfly and
determined by the amplitude Vm of the moiré potential, the
lifting of the valley degeneracy by the moiré potential, �V ≈
17 meV, and of the spin degeneracy by the Zeeman term �S

(� 3 meV at � = �0).
The simultaneous presence of multiple energy (and length)

scales gives rise to a conductance map of surprising complex-
ity. Displayed as a function of normalized flux �/�0 and
normalized carrier density n/n0 (Fig. 4) it features several
lines of low and high conductance. Lines of high conductance
are strictly horizontal at fixed B and appear prominently in the
projection onto the B (or �/�0) axis [Fig. 4(c)]. 〈G(B)〉 is
clearly dominated by a sequence of peaks at rational fractions
p/q of �/�0 and is periodic in 1/B, the so-called Brown-
Zak oscillations [7–9]. Each conductance peak is associated
with the ballistic transport of a BZf. The width of each peak
is controlled by the effective field Beff = B − Bp/q. Ballistic
transport is suppressed when the effective magnetic length
λBeff = √

h̄/(eBeff ) becomes smaller than the ribbon width
λBeff � W . In agreement with experiments [10–15,45], we
observe an asymmetry between the electron and the hole
side, which is caused by the next-nearest-neighbor graphene-
substrate interlayer interaction [2].

The conductance map also features a multitude of in-
tersecting straight lines of conductance minima, or “gaps”,
with different slopes, widths, and intersections with the n/n0

axis. A subset of these gaps extend over the entire range of

FIG. 4. (a) Conductance traces of a 750 nm wide graphene nanoribbon on hBN at specific magnetic fields of B = 0, B = 20, B = 23.5 T.
(b) Conductance map G(n/n0, B). Landau gaps appear as light, tilted lines, and Brown Zak oscillations as dark horizontal lines. The vertical
axis �/�0 on the rhs denotes the normalized flux per moiré unit cell. (c) The conductance map projected onto the B axis 〈G(B)〉 shows
pronounced Brown Zak oscillations periodic in 1/B.
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0 � �/�0 � 1, while other, less prominent gaps only open
for small field regions. Such gaps are conventionally described
in terms of Wannier diagrams [20] which were originally
developed for bandstructures with quadratic dispersion.

We analyze in the following the Wannier diagrams for
pristine graphene and graphene on hBN. For a system with
Schrödinger-like quadratic dispersion originally considered
by Hofstadter [3] and Wannier [20], the Landau level energies
evolve as function of B according to E (S)

t (B) = h̄ωB(t + 1/2)
with t ∈ N and ωB = eB/m the cyclotron frequency. Con-
sequently, the gaps between Landau levels t − 1 and t are
centered at E (S)

g,t = h̄ωBt . The normalized charge carrier den-
sity up to the Landau gap t follows in form of a Diophantine
equation as

n

n0
=

∫ E (S)
g,t

0
ρ (S)(E ) dE + gs = g

(
t

�

�0
+ s

)
(5)

with s the number of filled bands at E0 = 0, g the degeneracy
and ρ(E ) = g/(2π ) the constant density of states for fermions
with quadratic dispersion in two dimensions. By contrast, the
linear dispersion of massless Dirac (D) fermions results in
the Landau levels at E (D)

t (B) = sgn(t )vF
√

2h̄|teB| with t ∈ Z.
Here, t = 0 corresponds to the zero-energy Landau level, a
feature specific to Dirac fermions [46,47]. Taking into ac-
count the linear increase of the density of states near the
Dirac point, ρ (D) ∝ |E |, an analogous calculation immediately
yields a modified Diophantine equation for Landau level gaps
of graphene near the charge neutrality point, the half-integer
Wannier equation

n

n0
= g(D)

((
t + 1

2

)
· �

�0
+ s

)
, s, t ∈ Z. (6)

Here, g(D)denotes the degeneracy of the graphene levels and
is g(D) = 4 for full valley and spin degeneracy. The present re-
sults are fully consistent with the characteristic “half-integer”
quantum Hall conductance [46,47] σxy = g(D)(t + 1/2) e2/h,
t ∈ Z of graphene. For massless Dirac fermions the minimal
degeneracy is g(D) � 2 due to fermion doubling as conse-
quence of the Nielsen-Ninomiya theorem [48] realized as
valley degeneracy in graphene. Thus, the gaps described by
Eq. (6) are, despite the half-integer slopes (t + 1/2), always
a proper subset of those resulting from Eq. (5). Moreover,
the slopes t of the gaps in the Wannier diagram field can be
related to the Hall conductivity σxy = e∂n/∂B|E=EF = −C ·
e2/h [21,49] with Chern number C.

To illustrate the differences and similarities between Wan-
nier diagrams emerging for Schrödinger-like and Dirac-like
dispersion, a comparison with the Wannier diagram of the
pristine honeycomb lattice (Fig. 5) is instructive. We note that
the required magnetic field to achieve a magnetic flux quan-
tum �0 through a single unit cell of the graphene honeycomb
is orders of magnitude larger than for the moiré supercell due
to the difference in area of the unit cell. In the following we
denote quantities related to pristine graphene (as opposed to
graphene on hBN) by the subscript graph. Pristine graphene
features a parabolic dispersion near the band maxima and min-
ima (Egraph = ±1), but a linear (Dirac-like) dispersion at the
Dirac points (Egraph = 0). Accordingly, the Hofstadter butter-
fly (energy eigenvalues as function of magnetic flux [4,50,51])

FIG. 5. Pristine graphene lattice at strong magnetic fields.
(a) The Hofstadter butterfly of a pristine hexagonal lattice (eigen-
values in purple). (b) The conductance map of a pristine graphene
nanoribbon G(E ,�/�0,graph). The overlayed lines show all Landau
gaps predicted by the Schrödinger-like Diophantine equation Eq. (5)
(blue-dashed lines, t = 0, 1, 2, 3) and the subset predicted by the
Dirac Diophantine equation Eq. (6) (green solid lines, t = 0, 1) for
the same range of positive slopes (0 � dn/d� � 3n0/�0). Spin ne-
glected for simplicity.

of the hexagonal lattice [Fig. 5(a)] features around Egraph =
0 only those gaps described by the half-integer formula of
Eq. (6), while all gaps near Egraph = ±1 follow the usual
Schrödinger-like formula [Eq. (5)] Additional lines in Fig. 5
mark selected gaps emerging from (Egraph = −1, �graph =
0) (dashed blue lines) and (Egraph = 0, �graph = 0) (green
solid lines). Schrödinger-like and Dirac-like Landau fans are
closely intertwined. Gaps emanating from the Dirac point at
Egraph = 0 for � = 0 continuously evolve into gaps forming
Schrödinger-like Landau fans at Egraph = ±1 and �graph = �0

and vice versa. This connection reflects the observation that
the lines predicted by Eq. (6) form a proper subset of those
predicted by Eq. (5). Indeed, there are lines predicted only
by Eq. (5) but not by Eq. (6) connecting a Schrödinger-like
Landau fan at �graph = 0 with another one at �graph = �0, for
example the vertical lines at Egraph = ±1. By contrast, a simi-
lar vertical line from �graph = 0 to �graph = �0 at Egraph = 0
is missing.

The conductance signal for the pristine graphene ribbon
in Fig. 5(b) closely mirrors the eigenvalue map, Fig. 5(a).
Energy gaps between eigenvalues now appear as regions
of low conductance while regions densely populated with
eigenvalues correlate with a larger conductance. Resulting
density enhancements along horizontal lines with rational flux
�graph/�0 give rise to Brown-Zak oscillations.

After rescaling the energy axis to a density axis we can
directly compare the resulting Wannier diagram for pristine
graphene [Fig. 6(a)] with that for the moiré-induced supercell
of graphene on hBN [Fig. 6(b)]. It is important to realize
that the Wannier diagram for the superlattice represents the
magnification of a small region near �graph/�0 = 0 and near
the Dirac point Egraph ≈ 0 of the diagram for pristine graphene
Fig. 6(a). This is because the scale of the Wannier diagram is
determined by the magnetic flux through a unit cell as well
as the electron density n normalized to a unit cell (denoted
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FIG. 6. Comparison between the Wannier diagram for pristine
graphene (a) and for graphene on hBN (b). Shown is the conductance
map G(n/n0, �/�0 ) with an overlay of the Landau gaps predicted
by the Schrödinger-like Diophantine equation Eq. (5) (blue dashed
lines) and by the Dirac Diophantine equation Eq. (6) (green solid
lines). The six green solid lines emanating from n = 0 are the same
in (a) and (b). G at fixed n/n0 is periodic in �/�0 in (a) but not in
(b) because the satellite cones break the periodicity. Note that the
range of magnetic field and density values covered by (b) is only a
very small fraction of those covered by (a), schematically indicated
by the (not to scale) box in (a): n/n0 ≈ 1.5 × 10−4n/n0,graph. The
range −2 � n � 2 is due to the g = 4 degeneracy of graphene.

by n0 for the moiré supercell of graphene on hBN and by
n0,graph for pristine graphene). The most prominent difference
are the Dirac satellite cones with spacings of n/n0 = 4 in the
presence of the moiré potential [Fig. 6(b)], which are absent
in the case of pristine graphene [Fig. 6(a)]. The Wannier dia-
gram for the moiré superlattice is therefore, unlike for pristine
graphene, not periodic in � with period �0. Periodicity is
broken because the lateral spacing between the Dirac fans
of the satellite cones is 4(n/n0) while the minimum slope in
the Dirac diophantine equation [Eq. (6)] is 2. Consequently,
the fans at 0,±4(n/n0), . . . at �/�0 = 0 connect to fans at
±2,±6, . . . (n/n0) at �/�0 = 1. Correspondingly, lines that
would reach n/n0 = 0,±4 at � = �0 are missing. Such a
nonperiodicity is clearly visible in recent experiments (see
Appendix C).

The Wannier diagram for the moiré superlattice reveals
that weakly lifting the valley degeneracy by the interaction

with hBN and the spin degeneracy by the Zeeman interaction
locally generates additional gaps that follow the conventional
Diophantine equation [Eq. (5)] with g = 1 [see blue dashed
lines in Fig. 6(b)]. Since the energy scale Vm of the moiré
potential forming the BZfs is large compared to the valley
splitting �v and spin splitting �s generating these gaps, the
additional gaps persist only for small intervals of the mag-
netic field. Consequently, the additional lines predicted by
Eq. (5) disappear when passing through nearby BZfs at ratio-
nal �/�0. By contrast, the Dirac-like Landau gaps predicted
by Eq. (6) persist over the full magnetic field range [solid
green lines in Fig. 6(b)], resulting in the nonperiodic Wannier
diagram.

A comparison with recent experiments [14,17] confirms
all our qualitative predictions (see Appendix C), including
the broken periodicity in �0, the Wannier gaps predicted
for Dirac fermions, Eq. (6), and the local re-appearance of
additional gaps following Eq. (5) near crossing points in the
Wannier diagram. Note that our approach is based on an
effective single-particle description on the DFT level without
invoking any many-body effects. Our results can thus serve
as benchmark to identify true many-body physics beyond the
single-particle picture in experimental data. The energy scale
for many-body effects, �MB, can be estimated from the flat
bands in magic angle twisted bilayer graphene [52,53] and
from measurements on bilayer graphene quantum dots [54]
to be �MB � 1 meV and, thus, smaller than the energy
scales shaping the structures in the Wannier diagram [Figs. 4
and 6(b)] in the present case.

In conclusion, we have shown that Hofstadter’s butterfly
in graphene (pristine and aligned on hBN) follows a half-
integer Wannier equation for Landau gaps of massless Dirac
particles. When valley and spin degeneracy are broken by the
hBN substrate, a fine structure emerges that locally follows
Wannier’s equation for Schrödinger-like particles. This Wan-
nier description agrees with our highly accurate conductance
simulation of the graphene on hBN system. Our simulations
further show in detail the emergence of Brown-Zak fermions
in moiré superlattices.
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APPENDIX A: TIGHT-BINDING MODEL DETAILS

Several model Hamiltonians for describing graphene on
hBN have been proposed, often with a strong focus on quan-
titative prediction of band gaps or the lowest-energy bands
at zero or low magnetic fields [25,28,56–59]. We combine
an atomistic tight-binding Hamiltonian parametrized from
DFT and a mechanical strain model to correctly account for
strong magnetic fields (one flux quantum per moiré unit cell).
To derive an ab initio atomistic model for the moiré super-
structure of graphene on hBN, we first calculate an atomic
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FIG. 7. Stacking dependence of tight-binding coupling elements. (a) Frames of the graphene (orange) and hBN (blue) primitive unit cells,
the black arrow indicates their relative shift 
d . (b) Variation of one coupling element t0,1( 
d ) for different translation vectors 
d within the unit
cell spanned by 
a1 and 
a2. (c) reciprocal representation of (b). (d) Representation of (b) by low-order Fourier components (| 
G| < 2 · | 
G1|) only.

reconstruction using elasticity theory and — in a second step
— set each tight-binding parameter based on the local atomic
alignment as simulated by a primitive-cell DFT calculations.
In the following we briefly sketch the details of the model.

1. Rigid supercell

The lattice constants of graphene and hBN differ by
≈1.7% [28], preventing exact commensurabilty of perfectly
aligned hBN/graphene of any size still accessible by tight-
binding. To reach an approximate commensurability we
therefore fix our model to a hexagonal supercell containing
58 × 58 graphene unit cells and 57 × 57 hBN unit cells, set-
ting the lattice constants to 2.461 Å for graphene and 2.5042
Å for hBN. To obtain parameters for the different relative
atomic configurations within the large supercell, we consider
primitive cells (i.e., 4 atoms) with a corresponding relative
shift 
d between the graphene and hBN layer. We first map
primitive-cell tight-binding parameters as a function of 
d
using DFT, and then assemble a Hamiltonian for the entire
superstructure.

2. DFT calculation details

We perform ab-inito calculations for two different systems:
(1) Strain-dependent single-layer cells for the elasticity model
describing the layer relaxation (see next subsection) and (2)
stacking dependent primitive bilayer cells. Each of the cells
is calculated using VASP within the local density approx-
imation [32], together with a k mesh of 25 × 25 × 1 on a
Monkhorst pack grid, an energy cutoff of 380 eV and 25 Å
vacuum in the z direction.

a. Primitive cell hBN/graphene bilayer calculations

We map the two-dimensional configuration space of 
d us-
ing a 10 × 10 grid, resulting in 100 primitive bilayer cells.
Each with a top layer shifted relative to the bottom layer
by 
d = 
a1u/10 + 
a2v/10 with u, v ∈ {0, . . . , 9}, where 
d = 0
has AA stacking [see Fig. 7(a)] and 
a1 and 
a2 are the supercell
lattice vectors. For the hBN/graphene calculations we use
a primitive unit cell of 2.48 Å. The atomic positions were
allowed to relax in out-of-plane direction but remain fixed in-
plane. Subsequently, we project the Kohn-Sham orbitals onto
the pz carbon-orbitals via a Wannier transformation [61,62].
Note that we only include one pz orbital per carbon atom.
We thus exclude boron and nitrogen orbitals as well as the

σ and σ ∗ of graphene, since they do not directly contribute
to transport around the Fermi energy. For treating higher-
lying regions of the band structure, they would have to be
included [28].

Restricting the tight-binding parametrization to two or-
bitals in the graphene layer allows mapping the coupling as
a function of 
d , as each coupling element is periodic un-
der lateral translations along 
a1 and 
a2 [see, for example, in
Fig. 7(b)]. This periodicity would be broken for materials
with interlayer terms (e.g., in twisted bilayer graphene). For
the system at hand we can therefore express the stacking
dependence of each tight-binding hoping matrix element in
terms of a Fourier expansion,

t̂ 
G
i, j =

∑

d

ti, j ( 
d ) · ei 
d · 
G (A1)

with 
G = m 
G1 + n 
G2 for all m, n. Including the Fourier
components with | 
G| � 2 · | 
G1|, is sufficient to resemble the
modulation of t̂ 
G

i, j as a function of 
d [see Figs. 7(c) and 7(d)].
Similar to the coupling elements ti, j we parametrize the gener-
alized stacking fault energies (GSFEs) in terms of the Fourier
expansion, [28,34,35],

E ( 
d ) =
∑


G
c 
Gei 
d 
G, (A2)

describing the dependence of the DFT energy on the relative
alignment of the layers. The GSFE is utilized in the calcula-
tion of the in-plane lattice relaxation (see Appendix A.3).

b. Strain dependent single layer graphene calculations

In order to account for the considerable strain present in the
reconstructed graphene supercell, we additionally introduce a
local strain dependent correction to the couplings,

ti, j → ti, je
−(l i, j−l i, j

0 )αi, j . (A3)

Here l i, j describes the effective distance between the orbitals
i and j and l i, j

0 the corresponding unstrained distance. The α’s
are determined based on single layer strain dependent uniform
graphene calculations and fitted to the dependence of the ti, j

(taken from Wannier orbitals) on the lattice constant around
the equilibrium lattice constant of graphene (2.461Å). For
the DFT calculations similar specifications as for the stacking
dependent terms were used.
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FIG. 8. Graphene on hBN supercell and its lattice reconstruction. (a) Geometry of rigid graphene on hBN. (b) Energy landscape
(generalized stacking fault energy) of the stacking configuration. (c) Reconstruction of atomic positions. The arrows indicate the relative
displacement at a given stacking position. (d) Geometry of the reconstructed graphene hBN supercell, providing a similar structure as recently
observed by scanning tunneling microscopy [60].

3. Relaxation

In a hBN/graphene heterostructure, certain local configu-
ration of atoms are energetically more favourable than others,
resulting in considerable lattice reconstruction [60,63]. This
lattice reconstruction can be split into an out-of-plane part
defining the local distance between the layers and an in-plane
part causing a local sliding of atoms in lateral direction. The
latter is by orders of magnitude larger (see discussion below),
allowing us to treat the in-plane and out-of-plane relaxation
independently. Our approach for the in-plane lattice recon-
struction follows closely an elasticity model described by
Nam et al. [35] for twisted bilayer graphene. In such an ap-
proach, the equilibrium between energy gain due to a smaller
stacking fault energy and elastic energy cost due to lattice
deformations is determined. Our energy functional depends
on the local displacement vectors 
ui(
r) with i = hBN, G for
the two layers. It reads

Utot = UE [
uhBN] + UE [
uG] + UB[
uhBN, 
uG]. (A4)

The stacking dependence of the potential energy is
parametrized via the generalized stacking fault energy, using
the Fourier components c 
G of Eq. (A2),

UB[
uhBN, 
uG] = ∫
d
r ∑


G c 
G exp[i( 
d + �
u) · 
G]

with �
u = (
uhBN − 
uG). The intralayer energy UE describing
the elastic energy as defined in Eq. (25) of Ref. [35], is given
by

UE[
u l=G/hBN] =
∫

d
r
[

λl + μl

2

(
∂ 
ul

x

∂x
+ ∂ 
ul

y

∂y

)2

+ μl

2

(
∂ 
ul

x

∂x
− ∂ 
ul

y

∂y

)2

+ μl

2

(
∂ 
ul

x

∂y
+ ∂ 
ul

y

∂x

)2
]
.

(A5)

We use Lamé parameters (in units of eV/Å2) λG = 3.25 and
μG = 9.57 for graphene and λhBN = 3.5 and μhBN = 7.8 for
hBN [28,59,64]. This energy functional is most conveniently
minimized by utilizing a variant of the minimzation proce-
dure described by Nam et al. [35]. Minimizing the energy
functional [Eq. (A4)] suggests the AB stacking configuration
(one boron atom above one carbon atom) as the energetically
most favourable lattice alignment [see Fig. 8(c)] resulting in a

significant increase in the area of this stacking configuration
[compare Figs. 8(a) and 8(b)].

4. Tight-binding parameters

Accounting for the two main effects influencing the
graphene/hBN lattice, namely the presence of a hBN layer
and the induced strain, we model the influence of the hBN
layer on the graphene layer by stacking dependent tight-
binding parameters ti, j ( 
d ) and the strain dependence by
Eq. (A3).

APPENDIX B: COMPUTING THE CONDUCTANCE
FROM A BAND STRUCTURE

The key results presented in the main text required the
evalutaion of the conductance of the graphene on hBN moiré,
a veritably huge system by all numerical standards. Our ap-
proach relies on the fact that the conductance as a function
of energy G(E ) of a strictly periodic, translationally invariant
nanoribbon (see Fig. 1) is proportional to the number of open
modes propagating in +x direction M(E ), G(E ) = e2

h M(E )
[65].

In general, it is a formidable task to solve for the number
of open modes at a given energy, since the recursive Greens
function formalism (used in the standard Landauer-Buttiker
calculation) scales with the number of basis functions in the
unit cell of the ribbon N as O(N3). By contrast, calculating
the band structure only requires eigenvalues around the charge
neutrality point of a sparse matrix for a given k, readily al-
lowing for iterative schemes. We need to solve the eigenvalue
problem of Eq. (2), which we write for brevity as

H (k)ψn = En(k) ψn. (B1)

Using shift-and-invert in conjunction with the Lanczos
method, we calculate about 100 energy eigenvalues En(k) of
the band structure with a single matrix factorization — we
factorize at several energy values to cover the energy range
E ≈ [−0.3, 0.3] eV.

The difficulty now lies in determining the number of modes
propagating in +x direction from a discrete set of eigenvalues
En( j · �k), j ∈ N for a given resolution �k in reciprocal
space. We use the sign of the group velocities vg = h̄∂E/∂k to
select and properly map the number of bands from the k axis
onto the number of modes propagating in the +x direction M

165412-7
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FIG. 9. Sampling a band structure, schematically. Bands En(k)
in purple and orange, are “sampled” equidistantly in k space at the
green dots En( j · �k). In an energy interval �E , more points from
the flatter (orange) than for the steeper (purple) band are sampled.
The density of states, Eq. (B4), corresponds to counting the number
of points in an energy interval �E . To estimate the number of bands
in an energy interval �E , Eq. (B2), one has to weight each sampled
point on the k axis by the associated slope, i.e., the corresponding
group velocity, which is larger for the steeper line.

on the energy axis,

M(E ) ≈
M∑

m=1

∂E

∂k

�k

�E
≈ d

dE

∑
n:En<E ,v

(n)
g >0

h̄v(n)
g · �k. (B2)

The summation runs over all eigenvalues En with energy
smaller than E . We obtain a histogram of the band structure,
weighted by the group velocities (Fig. 9). To reduce the ef-
fect of binning, we evaluate Eq. (B2) in terms of an energy
derivative of a smoothed density obtained from interpolating
the discrete sum.

We compare the present band structure sampling method
for extracting the conductance from properties of the band
structure with the conventional method using the stan-
dard Landauer-Buttiker [42,43,66,67] formalism. The present
method approximates the conductance trace of a 18 nm wide
graphene nanoribbon (for which the computationally more
demanding Landauer-Buttiker formalism can still be applied)
with remarkable accuracy (Fig. 10). The accuracy of Eq. (B2)
depends on the number of k points Nkpt used. Its precision
can be increased by a finer sampling of the band structure;
shown here are samplings of Nkpt = 1000 and Nkpt = 2000.
We find suitable convergence of the conductance (i.e., no
further noticeable change upon further increasing Nkpt) for
Nkpt = 3000, which we use for all final results.

Obtaining an accurate estimate of the conductance requires
evaluating the band structure at a large number Nkpt of k
points. To further improve the efficiency of our Krylov-space
approach, we exploit the continuity of the band structure for
small variations in k. Instead of solving the Bloch eigenvalue
problem for all Nkpt k points, we calculate a Krylov-space for
an evenly spaced subset {ki}, i = 1 . . . NkS with NkS � Nkpt

k points. We then combine the subspaces of two adjacent k
values ki and ki+1 to form a basis {bi} spanning the eigen-
vectors of both Krylov spaces. We can now readily evaluate
the band structure for densely spaced intermediate k values
ki � k � ki+1 by projection onto the basis {bi}. An initial
coarse sampling of the Brillouin zone NkS is thus sufficient
to obtain an excellent k resolution of the band structure. Un-
physical eigenvalues that appear because of the larger size of
the combined subspace are efficiently identified by evaluating

FIG. 10. Conductance G as a function of energy of an 18 nm
wide graphene ribbon calculated in Landauer-Buttiker formalism
(“LB”, purple), and with help of the band structure sampling. Shown
are a calculations by band structure sampling (BSS) Eq. (B2) with
2000 k points [“BSS (2000 k)”, red], offset by 4e2/h, and 1000 k
points [“BSS (1000 k)”, orange], offset by 8e2/h. BSS curves are
smoothed to remove artifacts of the k-point sampling while still
retaining as much detail (conductance steps) as possible.

the error norm

δn =
∑

i

|φi[H (k) − En(k)1]ψn|2 (B3)

for a set of randomly chosen vectors φi ∈ CN with i =
1, . . . , NK that heuristically sample the full eigenvalue equa-
tion. δn is zero only for a true eigenvector of the full problem.
The projections of φi on H0 and HI are k independent and thus
need only be evaluated once.

FIG. 11. Conductance of graphene aligned on hexagonal boron
nitride as a function of charge carrier density and magnetic field: Ex-
perimental data (color scale) taken from Ref. [14]. Lines overlayed in
the yellow-green contrast colors are from Eq. (6) and give the density
dependence of the Landau gaps. They reproduce the nonperiodicity
in � of the measurement. Gaps between these Landau gaps can now
be easily identified as spin- and valley gaps, compare Fig. 6(b).
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FIG. 12. Conductance of graphene aligned on hexagonal boron
nitride as a function of charge carrier density and magnetic field:
Experimental data (color scale: “Indigo-to-yellow colors: Log scale
truncated between 38 nS and 16 mS for B < 14 T and between 4
nS and 0.4 mS above 14 T.”) taken from Barrier et al. [17]. Lines
overlayed in the red are from Eq. (6) and give the density dependence
of the Landau gaps. They reproduce the nonperiodicity in � of
the measurement. Yellow horizontal lines of large conductance at
rational flux signifying Brown-Zak oscillations are broken at the
densities where Landau gaps appear [compare Fig. 6(b)].

Analogously, the density of states can be extracted by sam-
pling the band structures for the conductance,

ρ(E ) ≈ d

dE

∑
n:En<E

�k. (B4)

We emphasize that Brown-Zak oscillations are not visible in
the density of states (Fig. 2), because of the broadening of the
Landau levels and associated smearing of the density of states.
Peaks induced by Brown-Zak oscillations only appear in the
conductance after weighting the sum in Eq. (B4) by the group
velocities [Eq. (B2)].

APPENDIX C: COMPARISON WITH THE EXPERIMENT

The Wannier diagram of the Landau gaps of graphene on
hexagonal boron nitride close to charge neutrality [Eq. (6)]

n

n0
= 4

((
t + 1

2

)
· �

�0
+ s

)
, s, t ∈ Z (C1)

provides a natural explanation for the evolution of the large
Landau gaps in recent measurements. We overlay the gaps
according to Eq. (6) on the data obtained by Wang et al. [14]
(Fig. 11) and Barrier et al. [17] (Fig. 12). The most prominent
conductance minima, or gaps, are the Landau fans emerging
from n/n0 = . . . ,−4, 0, 4, . . . at �/�0 = 0 which asymmet-
rically evolve to Landau fans at n/n0 = . . . ,−2, 2, . . . at
�/�0 = 1 (see also Fig. 13 for the evolution of the gaps in our
simulation for an extended range of density values compared

FIG. 13. (a) Conductance map G(n/n0, B) of a 750-nm-wide graphene nanoribbon on hBN (same system as in Fig. 4 showing an extended
charge carrier density range). Note the periodic repetition of satelite Dirac cones on the extended n/n0 axis. Additional vertical axis �/�0

denotes the normalized flux per moiré unit cell.
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to Fig. 4). In both measurements, no other gaps are visible
that extend over the full magnetic field range. Furthermore,
smaller spin- and valley gaps (between the overlayed Landau

gaps) become visible for small magnetic field ranges, e.g., in
the first and second Landau level in both experiments [com-
pare also the data in Fig. 6(b)].
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E. McCann, and V. I. Fal’ko, Phys. Rev. B 89, 075401
(2014).

[25] S. Carr, S. Fang, and E. Kaxiras, Nat. Rev. Mater. 5, 748 (2020).
[26] L. A. Chizhova, F. Libisch, and J. Burgdörfer, Phys. Rev. B 90,

165404 (2014).
[27] J. Jung, A. Raoux, Z. Qiao, and A. H. MacDonald, Phys. Rev.

B 89, 205414 (2014).
[28] J. Jung, A. M. DaSilva, A. H. MacDonald, and S. Adam, Nat.

Commun. 6, 6308 (2015).
[29] G. Chen, M. Sui, D. Wang, S. Wang, J. Jung, P. Moon, S. Adam,

K. Watanabe, T. Taniguchi, S. Zhou, M. Koshino, G. Zhang, and
Y. Zhang, Nano Lett. 17, 3576 (2017).

[30] M.-H. Liu, P. Rickhaus, P. Makk, E. Tóvári, R. Maurand, F.
Tkatschenko, M. Weiss, C. Schönenberger, and K. Richter,
Phys. Rev. Lett. 114, 036601 (2015).

[31] S.-C. Chen, R. Kraft, R. Danneau, K. Richter, and M.-H. Liu,
Commun. Phys. 3, 71 (2020).

[32] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[33] R. Bistritzer and A. H. MacDonald, Phys. Rev. B 84, 035440

(2011).
[34] J. Quan, L. Linhart, M.-L. Lin, D. Lee, J. Zhu, C.-Y. Wang,

W.-T. Hsu, J. Choi, J. Embley, C. Young, T. Taniguchi, K.
Watanabe, C.-K. Shih, K. Lai, A. H. MacDonald, P.-H. Tan, F.
Libisch, and X. Li, Nat. Mater. 20, 1100 (2021).

[35] N. N. T. Nam and M. Koshino, Phys. Rev. B 96, 075311
(2017).

[36] S. Carr, D. Massatt, S. B. Torrisi, P. Cazeaux, M. Luskin, and
E. Kaxiras, Phys. Rev. B 98, 224102 (2018).

[37] M. V. Berry and R. J. Mondragon, Proc. R. Soc. London A 412,
53 (1987).

[38] C. Lanczos, J. Res. National Bureau Standards 45, 255
(1950).

[39] G. H. Golub and H. A. van der Vorst, J. Comput. Appl. Math.
123, 35 (2000).

[40] R. Lehoucq, D. Sorensen, and C. Yang, Arpack users’ guide:
Solution of large scale eigenvalue problems with implicitly
restarted Arnoldi methods, 1997.

[41] I. Rungger and S. Sanvito, Phys. Rev. B 78, 035407 (2008).
[42] R. Landauer, IBM J. Res. Dev. 1, 223 (1957).
[43] M. Büttiker, Phys. Rev. B 38, 9375 (1988).
[44] J. W. McClure, Phys. Rev. 104, 666 (1956).
[45] J. Li, L. Lin, G.-Y. Huang, N. Kang, J. Zhang, H. Peng, Z. Liu,

and H. Q. Xu, J. Appl. Phys. 123, 064303 (2018).
[46] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature

(London) 438, 201 (2005).
[47] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.

Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

[48] H. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 (1981).
[49] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den

Nijs, Phys. Rev. Lett. 49, 405 (1982).

165412-10

https://doi.org/10.1103/PhysRevLett.101.126804
https://doi.org/10.1038/nphys2272
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1051/jphys:019850046080134500
https://doi.org/10.1103/PhysRevB.75.125429
https://doi.org/10.1038/s41467-022-30334-3
https://doi.org/10.1103/PhysRev.133.A1038
https://doi.org/10.1103/PhysRev.134.A1602
https://doi.org/10.1103/PhysRev.134.A1607
https://doi.org/10.1038/nature12187
https://doi.org/10.1038/nature12186
https://doi.org/10.1126/science.1237240
https://doi.org/10.1038/nphys2979
https://doi.org/10.1126/science.aad2102
https://doi.org/10.1126/science.aal3357
https://doi.org/10.1073/pnas.1804572115
https://doi.org/10.1038/s41467-020-19604-0
https://doi.org/10.1007/BF01339455
http://jetp.ras.ru/cgi-bin/e/index/e/19/3/p634?a=list
https://doi.org/10.1002/pssb.2220880243
https://doi.org/10.1088/0022-3719/15/22/005
https://doi.org/10.1103/PhysRevB.86.235411
https://doi.org/10.1103/PhysRevB.82.035438
https://doi.org/10.1103/PhysRevB.89.075401
https://doi.org/10.1038/s41578-020-0214-0
https://doi.org/10.1103/PhysRevB.90.165404
https://doi.org/10.1103/PhysRevB.89.205414
https://doi.org/10.1038/ncomms7308
https://doi.org/10.1021/acs.nanolett.7b00735
https://doi.org/10.1103/PhysRevLett.114.036601
https://doi.org/10.1038/s42005-020-0335-1
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.84.035440
https://doi.org/10.1038/s41563-021-00960-1
https://doi.org/10.1103/PhysRevB.96.075311
https://doi.org/10.1103/PhysRevB.98.224102
https://doi.org/10.1098/rspa.1987.0080
https://doi.org/10.6028/JRES.045.026
https://doi.org/10.1016/S0377-0427(00)00413-1
https://doi.org/10.1103/PhysRevB.78.035407
https://doi.org/10.1147/rd.13.0223
https://doi.org/10.1103/PhysRevB.38.9375
https://doi.org/10.1103/PhysRev.104.666
https://doi.org/10.1063/1.5009742
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04233
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1103/PhysRevLett.49.405


HALF-INTEGER WANNIER DIAGRAM AND BROWN-ZAK … PHYSICAL REVIEW B 106, 165412 (2022)

[50] F. Yılmaz, F. N. Ünal, and M. O. Oktel, Phys. Rev. A 91, 063628
(2015).

[51] F. Yılmaz and M. O. Oktel, Phys. Rev. A 95, 063628 (2017).
[52] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,

E. Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43
(2018).

[53] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T.
Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Science 363,
1059 (2019).

[54] S. Möller, L. Banszerus, A. Knothe, C. Steiner, E. Icking,
S. Trellenkamp, F. Lentz, K. Watanabe, T. Taniguchi, L. I.
Glazman, V. I. Fal’ko, C. Volk, and C. Stampfer, Phys. Rev.
Lett. 127, 256802 (2021).
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