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Orbital-free density functional theory (OFDFT) directly solves for the ground-state electron density. It scales
linearly with respect to system size, providing a promising tool for large-scale material simulations. Removal
of the orbitals requires use of approximate noninteracting kinetic energy density functionals. If replacing ionic
cores with pseudopotentials, removal of the orbitals also requires these pseudopotentials to be local. These are
two severe challenges to the capabilities of conventional OFDFT. While main group elements are often well
described within conventional OFDFT, transition metals remain intractable due to their localized d electrons. To
advance the accuracy and general applicability of OFDFT, we have recently reported a general angular momentum
dependent formulation as a next-generation OFDFT. In this formalism, we incorporate the angular momenta of
electrons by devising a hybrid scheme based on a muffin tin geometry: inside spheres centered at the ionic cores,
the electron density is expanded in a set of atom-centered basis functions combined with an onsite density matrix.
The explicit treatment of the angular momenta of electrons provides an important basis for accurately describing
the important ionic core region, which is not possible in conventional OFDFT. In addition to the conventional
OFDFT total energy functional, we introduce a nonlocal energy term containing a set of angular momentum
dependent energies to correct the errors due to the approximate kinetic energy density functional and local
pseudopotentials. Our approach greatly increases the accuracy of OFDFT while largely preserving its numerical
simplicity. Here, we provide details of the theoretical formulation and practical implementation, including the
hybrid scheme, the derivation of the nonlocal energy term, the choice of basis functions, the direct minimization
of the total energy, the procedure to determine the angular momentum dependent energies, the force formula with
Pulay correction, and the solution to emerging numerical instability. To test the angular momentum dependent
OFDFT formalism and its numerical implementations, we calculate a diverse set of properties of the transition
metal Ti and compare with different levels of DFT approximation. The results suggest that angular momentum
dependent OFDFT ultimately will extend the reliable reach of OFDFT to the rest of the periodic table.
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I. INTRODUCTION

Based on the firm theoretical footing of the Hohenberg-
Kohn theorems [1], density functional theory (DFT) has
gained vast popularity as an extremely powerful tool for
the first-principles simulation of electronic and structural
properties of materials. The great success of DFT is attributed
to the Kohn-Sham (KS) decomposition in which the intractable
many-electron problem is reduced to a calculable problem of
noninteracting electrons moving in an effective potential [2].
Thus far, theorists have developed two ways to implement
DFT: KS orbital-based DFT [2] and orbital-free (OF) DFT [3],
distinguished by the different treatments of the noninteracting
kinetic energy (KE). KSDFT has been established as the
workhorse for first-principles simulations due to its good
compromise between accuracy and computational efficiency
(as compared to more expensive correlated wave function
methods) [4]. However, the required orthogonalization of the
KS orbitals in standard KSDFT implementations makes the
computational cost scale cubically with respect to system
size, making a sample with more than a thousand atoms
prohibitively costly to simulate. Several different linear scaling
KSDFT algorithms have been devised (for reviews, see
Refs. [5,6]), albeit with large prefactors. Notably, linear scaling
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KSDFT methods depend on approximations requiring highly
localized orbitals, and their applicability is therefore limited
to systems with band gaps, which excludes metallic systems.
Consequently, a wide range of important applications, such as
first-principles simulations of large-scale nanoelectronics [7],
nanomechanics [8], or amorphous materials [9], requiring the
ability to explicitly model systems with thousands of atoms
(or even more), are challenging or not feasible using modern
KSDFT methods. In contrast to KSDFT, OFDFT [3] features
great advantages in its numerical simplicity and quasilinear
scaling with system size for all types of materials. There are
numerous examples of large-scale OFDFT-based simulations
that highlight its numerical advantages for cases in which
adequate approximate functionals are available [10–19].

OFDFT employs approximate noninteracting KE density
functionals (KEDFs), making OFDFT less accurate than
KSDFT for almost all materials. Except for limiting cases,
such as the local Thomas-Fermi (TF) KEDF [20] for the
uniform electron gas and the semilocal von Weizsäcker (vW)
KEDF [21] for single orbital systems, the exact form of
the KEDF remains unknown. Recently, theorists have made
considerable efforts to advance KEDFs, including two-point
KEDFs based on linear response theory [22–26], three-
point KEDFs involving higher-order response [23,27,28], and
single-point KEDFs in different forms of generalized gradient
approximations [29–32]. However, we are still far from a
generally applicable KEDF.
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Because conventional OFDFT typically is implemented
in the context of plane-wave techniques (such as the fast
Fourier transform) and available KEDFs are only suitable for
systems featuring comparatively smooth electron densities,
pseudopotentials are required to represent the interaction
between the valence electrons and the ionic cores. How-
ever, conventional OFDFT utilizes local pseudopotentials
(LPSs). To obtain optimal LPSs, several techniques have
been proposed [14,33–38]. Unfortunately, even elaborate LPS
procedures do not produce the high accuracy of nonlocal
pseudopotentials (NLPSs) that are widely used in KSDFT.

The applicability of conventional OFDFT is thus largely
constrained by the limited accuracy of available KEDFs and
LPSs. In particular, one of the most challenging issues for
OFDFT is the description of transition metals, which are
characterized by highly localized d electrons, for which no
KEDF or LPS exists. Exceptions are the coinage metals, such
as Ag, which is a special case because of their full d shells [39].

These difficulties occur because conventional OFDFT
makes exclusive use of the total electron density as the sole
working variable: electrons with different angular momenta
cannot be distinguished. It is therefore impossible to include
the critically important nonlocal physics in the exact KE and
the ion-electron interaction, especially in the core region.
In particular, the KE potential and the pseudopotentials in
OFDFT must be local quantities. By contrast, angular mo-
mentum dependent (AMD) NLPSs and the exact KE operator
containing an AMD centrifugal potential are responsible
for the high accuracy and excellent transferability of the
Kohn-Sham ansatz. Furthermore, because of the nonlinear
dependence of T KEDF

s on ρ, using the total electron density
in conventional OFDFT can induce unphysical interactions
between electrons of different angular momenta. In contrast,
the exact KE depends linearly on the occupation of each
angular momentum channel. These unphysical interactions in
the KEDF can result in errors in the KE potential which, in
turn, influence the electron density distribution. In addition,
the modern two-point KEDFs [22–24], which are the most
accurate KEDFs to date, reproduce the Lindhard linear
response function in the limit of a uniform electron gas subject
to a small perturbation [22–24]. They are thus only accurate
for nearly free-electron-like systems, i.e., main group metals
and their alloys. The application of conventional OFDFT to
localized electrons, e.g., in transition metals, can result in large
errors in the electron density, its response to external fields,
and ultimately in system properties [40].

To correct these deficiencies, we have recently developed
angular momentum dependent OFDFT (AMD-OFDFT) [41],
a new generation of OFDFT to advance its accuracy and
general applicability. The AMD-OFDFT formalism uses a
general hybrid scheme based on a muffin tin (MT) geometry:
the electron density inside MT spheres is expressed by a set
of KSDFT-derived, atom-centered basis functions combined
with an onsite density matrix, while conventional OFDFT
describes the interstitial region where the electron density is
smoother and hence more amenable to accurate description
by existing KEDFs. The explicit treatment of electron angular
momenta within the atom-centered spheres provides the basis
for accurately describing the important ionic core region.
In addition to the total energy functionals of conventional

OFDFT, we introduce a crucial nonlocal energy term that
includes a set of AMD energies to effectively correct errors
due to the approximate KEDFs and LPSs in the important
core region, resulting in improved electronic structure and
system properties. As we have shown [41], AMD-OFDFT
substantially improves various properties of the transition
metal titanium over conventional OFDFT, and features good
transferability of the AMD energies.

In this paper, we present the entire theoretical formulation
and all practical implementation details of the general AMD-
OFDFT. In Sec. II, we introduce a hybrid scheme based on a
MT geometry, a general OFDFT total energy functional with
angular momentum dependence, and a nonlocal energy term
and its associated AMD energy parameters which corrects
the errors due to the use of approximate KEDFs and LPSs.
Section III presents the derivation of the atom-centered
basis functions in the MT spheres based on KSDFT-NLPS
calculations of target systems. We then discuss the direct
minimization of AMD-OFDFT total energy functional with the
necessary constraints applied in Sec. IV. Section V describes
the modified KEDF model with a weighting function to
reduce nonlinear errors of the KEDF within the MT geometry.
Section VI details how to determine the AMD onsite energies
for the MT spheres. We derive a force formula with a
Pulay correction (arising from the atom-centered functions)
in Sec. VII. In Sec. VIII, we introduce a double-sphere
technique and a down-sampling approach for solving the
numerical instability induced by representing the MT spheres
on a nonconforming three-dimensional (3D) uniform grid.
We present computational details and discuss our results in
Sec. IX. Finally, we provide a summary in Sec. X, and
additional technical details in Appendices A, B, and C.

II. AMD-OFDFT TOTAL ENERGY

Several all-electron KSDFT methods, such as the linearized
augmented plane-wave (LAPW) [42] and the linearized muffin
tin orbital (LMTO) [43] methods, are based on a MT geometry.
In such a geometry, the system is partitioned into atom-
centered MT spheres and an interstitial region (see Fig. 1).
Here, we use a MT geometry to define a general OFDFT

FIG. 1. The muffin tin geometry partitions space into spheres
centered on nuclei and an interstitial region.
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total energy functional with explicit angular momentum
dependence.

Within the MT geometry, we rewrite the total electron
density as [41]

ρ(�r) =
∑
R

ρR(�rR) + ρI (�r), (1)

where ρR(�rR) is the electron density inside the MT sphere
with a radius W1R centered on site �R, ρI (�r) is the interstitial
electron density, and �rR = �r − �R. To explicitly include angular
momentum dependence, we introduce a set of fixed atom-
centered basis functions ψR,lm = φR,l(rR)Ylm(�), where Ylm

are the spherical harmonics. We can now express ρR as

ρR(�rR) =
∑

lm,l′m′
NR,lm,l′m′ψ∗

R,lm(�rR)ψR,l′m′ (�rR). (2)

We omit the spin index throughout this paper for simplic-
ity. NR denotes the onsite density matrix which contains
information on the angular momenta of electrons. For atoms
with significant hybridization between different channels, the
off-diagonal elements of NR,lm,lm are important for improving
nonsphericity of electron density inside the MT sphere. Using
Eqs. (1) and (2), the OFDFT total energy functional can be
rewritten as

EOF[ρ] = EOF[{NR},ρI ], (3)

where the onsite density matrix {NR} and the interstitial
electron density ρI become the basic independent variables.
Up to now, no physical approximation has been made to the OF
total energy functional. Errors in the electron density inside the
spheres due to use of a finite basis set can be minimized by an
appropriate choice of the ψR,lm; our strategy for deriving basis
functions from NLPS-based KSDFT calculations is presented
in Sec. III. We typically use a comparatively small number
of basis functions. Compared to conventional OFDFT, using
such a finite number of basis functions strongly restricts the
shape of the electron density inside the MT spheres. However,
this restriction results in a more accurate electron density than
in conventional OFDFT: the nonlocal effect of the KE operator
and the NLPS on the shape of the electron density are included
by using basis sets derived from KSDFT. Additionally, the total
energy functional in Eq. (3) incorporates angular momentum
dependence by using NR for the MT sphere region where the
AMD physics is most important. Consequently, our hybrid
scheme provides the physical flexibility to include AMD
contributions not feasible in conventional implementations of
OFDFT.

The explicit form of EOF[{NR},ρI ] can be written as [41]

EOF[{NR},ρI ] = T KEDF
s [ρ] + EXC[ρ] + EH[ρ]

+ELPS
i-e [ρ] + ENL[{NR},ρI ], (4)

where the energies T KEDF
s , EH, EXC, and ELPS

i-e are the
noninteracting KE, Hartree energy, exchange-correlation en-
ergy, and LPS energy, respectively. The first four terms
comprise the conventional OFDFT total energy functional.
ENL describes nonlocal contributions beyond conventional
OFDFT. It corrects the errors due to the approximate T KEDF

s

and LPSs. Determining a physically sensible ENL is critical for

correct electronic structure and material properties, forming
the crux of our AMD-OFDFT formalism [41].

Ideally, ENL should contain all the differences between the
KSDFT and conventional OFDFT total energy functionals,
namely,

ENL = ENLPS
i-e + Ts − T KEDF

s , (5)

where ENLPS
i-e is only the nonlocal part of the pseudopotential

energy and Ts − T KEDF
s is the KE error. Note that the nonlocal

part of the pseudopotential is not uniquely defined since it
depends on the choice of the local pseudopotential. Conse-
quently, ENLPS

i-e depends on ELPS
i-e ; together they define a unique

total nonlocal pseudopotential energy. The exact computation
of ENL requires the exact KEDF which is unknown. We follow
here our derivation for ENL in Ref. [41], which we briefly
repeat for completeness. We choose the MT sphere radius for
each element large enough so that the nonlocal part of the
pseudopotential becomes zero in the interstitial region. The
minimal MT sphere radius is thus the cutoff radius rcutoff of
the NLPS used in solving for the basis functions (see Sec. III).

As amply demonstrated in many applications, modern
KEDFs [22–24] based on the Lindhard response function
exhibit accuracy comparable to KSDFT for main group metals.
Therefore, these KEDFs should be accurate enough to describe
the slowly varying electron density found in the interstitial
region. We thus neglect Ts − T KEDF

s there, using conventional
OFDFT to treat the interstitial region. Unfortunately, two
different representations of the KE result in a discontinuous
KE potential at the sphere boundary, causing unphysical
electron occupations. We thus enforce continuity by formally
introducing a smooth scaling function sR(r) [sR(r) = 0 for
r � W1R and 0 � sR(r) � 1 for r < W1R] in the evaluation
of the Ts − T KEDF

s inside the spheres, providing a rigorous
hybrid KEDF model (see details in the Supplemental Material
of Ref. [41]). Then ENL becomes

ENL = ENLPS
i-e +

∑
R

∫
MT

sR(rR)
[
τs(�rR) − τKEDF

s (�rR)
]
d�rR

= ENLPS
i-e + [T̃s]MT − [

T̃ KEDF
s

]
MT, (6)

where [T̃s]MT and [T̃ KEDF
s ]MT are the exact noninteracting KE

and the KEDF scaled by sR inside the MT spheres. Equation (6)
presents a physically reasonable expression for ENL, providing
an important basis for further development of AMD-OFDFT.
However, determining the optimal function values of sR(rR) on
a large number of radial grid points is too costly for practical
use. Instead, we investigate the functional dependence of each
term in Eq. (6) on the occupations NR to determine a more
practical expression containing the same physics.

We first consider ENLPS
i-e and [T̃s]MT in Eq. (6). They depend

linearly on the total occupation number of each l channel. In
particular,

ENLPS
i-e [NR] =

∑
R,lm

Nlm
R 〈ψR,lm|δV l

i-e|ψR,lm〉MT

=
∑
R,l

N total
R,l E

l,NLPS
R (7)
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and

[T̃s]MT = −1

2

∑
R,lm

Nlm
R 〈ψR,lm|sR∇2|ψR,lm〉MT

=
∑
R,l

N total
R,l E

l,Ts

R , (8)

where δV l
i-e is the nonlocal part of the pseudopotential,

N total
R,l = ∑l

m=−l N
lm
R , and we have introduced the shorthand

notation Nlm
R = NR,lm,lm. E

l,NLPS
R and E

l,Ts

R are constants that
depend on the shape of the basis functions of each l channel.
Consequently, a linear term in ENL can easily accommodate
the AMD effects of ENLPS

i-e and [T̃s]MT.
Next, we derive the linear and dominant nonlinear terms

in the employed KEDF to allow for their correction by ENL.
We Taylor expand a general KEDF [T̃ KEDF

s ]MT[NR] up to third
order around the average occupation number of each l channel
N0

R,l = N total
R,l /(2l + 1) to obtain

[
T̃ KEDF

s

]
MT[N ] = [

T̃ KEDF
s

]
MT

[{
N0

R,l

}] +
∑
R,lm

∂
[
T̃ KEDF

s

]
MT

∂Nlm
R

∣∣∣∣∣
{N0

R,l}
	Nlm

R + 1

2

∑
R,lm,l′m′

∂2
[
T̃ KEDF

s

]
MT

∂Nlm
R ∂Nl′m′

R

∣∣∣∣∣
{N0

R,l}
	Nlm

R 	Nl′m′
R

+ 1

6

∑
R,lm,l′m′,l′′m′′

∂3
[
T̃ KEDF

s

]
MT

∂Nlm
R ∂Nl′m′

R ∂Nl′′m′′
R

∣∣∣∣∣
{N0

R,l}
	Nlm

R 	Nl′m′
R 	Nl′′m′′

R + O
(
	N4

R

)
, (9)

where 	Nlm
R = Nlm

R − N0
R,l . We neglect the contribution of

off-diagonal elements of the density matrix because different
l channels hybridize minimally in the core region. Each term
in the above Taylor expansion plays a different role. We thus
consider individually each term of Eq. (9) in the following.

The zeroth-order term [T̃ KEDF
s ]MT[{N0

R,l}] determines the
absolute magnitude of the KE and the total occupation of each
l channel inside the spheres. We can expand this term further
according to different physical situations. In transition metals,
the electron density in the core region is dominated by the total
d-channel contribution, i.e., N total

R,d � {N total
R,s ,N total

R,p }. There-
fore, we make another Taylor expansion of [T̃ KEDF

s ]MT[{N0
R,l}]

at N0
R,s = N0

R,p = 0 because of the small contribution of s/p
channels:[
T̃ KEDF

s

]
MT

[
N0

R,l

] = [
T̃ KEDF

s

]
MT

[
N0

R,l

]∣∣
N0

R,s/p=0

+
∑

l′=s,p

∂
[
T̃ KEDF

s

]
MT

[
N0

R,l

]
∂N0

R,l

∣∣∣∣∣
N0

R,s/p=0

N0
R,l′

+ · · · . (10)

We only consider terms up to first order in this paper. It is clear

that [T̃ KEDF
s ]MT[{N0

R,l}]|N0
R,s/p=0 and

∂[T KEDF
s ]MT[N0

R,l ]

∂N0
R,l

|N0
R,s/p=0

only depend on N0
R,d of the localized electrons. As shown in

the Supplemental Material of Ref. [41], for modern two-point
KEDFs [22–24], we can approximate the zeroth-order term of
Eq. (10) as[
T̃ KEDF

s

]
MT

[
N0

R,l

] ≈ V
d,KEDF
R

(
N total

R,d

) 5
3 +

∑
R,l

N total
R,l E

l,KEDF
R ,

(11)

where E
l,KEDF
R and V

d,KEDF
R are constants.

For the first-order term in Eq. (9), the contributions of local
and semilocal KEDFs, such as the TF and vW terms in the
two-point KEDFs, are zero (see the Supplemental Material of
Ref. [41]) because of the spherical electron density distribution
when Nlm

R = N0
R,l inside the MT sphere. However, for the two-

point KEDF, the first derivative of its nonlocal part T NL
s , i.e.,

∂T NL
s

∂Nlm
R

|{N0
R,l}, depends on the quantum number m, contributing a

first-order error in Eq. (9). Since contributions of the nonlocal
term T NL

s are small in comparison to the TF and vW terms
in the two-point KEDFs, we neglect the first-order term in
Eq. (9).

We now consider the second- and third-order terms for
different KEDFs in Eq. (9). Since the s channel has only
a single m value, NR,s − N0

R,s = 0, it does not contribute.
We neglect contributions from the p channel since they are
small for transition metals. For the remaining d channel, the
second- and third-order coefficients can be written as (see the
Supplemental Material of Ref. [41])

1

2

∂2
[
T̃ KEDF

s

]
MT

∂Ndm
R ∂Ndm′

R

∣∣∣∣∣
{N0

R,l}
= U

KEDF,d
R Adm,dm′ (12)

and

1

6

∂3
[
T̃ KEDF

s

]
MT

∂Nlm
R ∂Nlm′

R ∂Nlm′′
R

∣∣∣∣∣
{N0

R,l}
= K

KEDF,d
R 
d,m,m′,m′′ , (13)

where Adm,dm′ = 4π
∫ |YdmYdm′ |2d� and 
d,m,m′,m′′ =

(4π )2
∫ |YdmYdm′Ydm′′ |2d� are constants independent of the

atomic species, and are evaluated numerically using a Lebedev
quadrature grid [44]. The prefactors U

KEDF,d
R and K

KEDF,d
R ,

treated as constants in the present method, are determined by
a fitting procedure (see Sec. VI). The dependence of U

KEDF,d
R

and K
KEDF,d
R on the occupations NR could also be considered

(see Appendix A).
In summary, by combining Eqs. (6)–(9) and (11)–(13), we

obtain a general form for ENL of

ENL[{NR}] =
∑
R,l

El
RN total

R,l −
∑
R,l

V l
R

(
N total

R,l

)5/3

−
∑

R,l,mm′
Ul

RAl,mm′	Nlm
R 	Nlm′

R

−
∑

R,l,mm′m′′
Kl

R
l,mm′m′′	Nlm
R 	Nlm′

R 	Nlm′′
R .

(14)
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The above derivation is based on transition metals where the d

channel dominates the core region. However, our formulation
can be easily generalized to systems with s or p channel
dominating the ionic core region, such as in first row elements.
We have introduced the onsite AMD energies El

R , V l
R , Ul

R , and
Kl

R . We chose V l
R , Ul

R , and Kl
R nonzero only for l channels

featuring localized electrons, such as the d channel in transition
metals or the p channel in main group nonmetals. At present,
we treat El

R , V l
R , Ul

R , and Kl
R as constants, neglecting their

dependence on the occupation numbers. As we show in Sec. IX
(see also Ref. [41]), Eq. (14) yields a significant improvement
in accuracy for an OFDFT description of transition metals.
The AMD energies El

R and V l
R are introduced to correct the

relative energies of different l-channel electrons inside the
MT spheres, as well as of the electrons in the interstitial
region. They are thus crucial for obtaining correct occupations
inside the MT spheres. The first (linear) term of Eq. (14)
includes the NLPS energy and the correction for the linear
errors in the KE inside the MT spheres. The form of N5/3

for the V l
R term corrects the leading nonlinear error in the

KEDF, arising from the highly nonlinear TF KEDF term
(see Appendix A). The first and second terms in Eq. (14)
are important for the absolute magnitude of the total energy
of the system. The last two terms in Eq. (14), especially
the third term containing Ul

R , are introduced to correct the
delocalization error in KEDFs, which arises from unphysical
interactions between the different m states of a given l channel.
The higher-order terms proportional to Ul

R and Kl
R in Eq. (14)

are important for correctly distributing electrons among the
2l + 1 subchannels within one l channel. The third term in
our model is mathematically identical to the KSDFT + U

formalism, which corrects the self-interaction error in the
XC functional due to approximate exchange energy [45]. We
benchmark our OFDFT calculations against KS calculations
using the same XC functional without a Hubbard U . The
improvements we observe are thus related to the correction for
the delocalization error in the kinetic energy, not the exchange
energy. Our formalism could be trivially extended to include a
KSDFT + U like contribution.

Despite the obvious importance of ENL in Eq. (14), directly
evaluating the energies El

R , V l
R , Ul

R , and Kl
R is challenging.

Instead, we find optimal values for these AMD energies by
comparing with a small set of benchmark KSDFT properties,
and then test transferability of these parameters against a large
number of additional properties.

We have introduced the formulation of AMD-OFDFT
by applying a MT-geometry-based hybrid scheme. In the
present method, overlapping spheres are not allowed since
we do not yet have an effective way to remove errors due
to double counting in the overlapping region. As stated
above, the lower bound for the MT sphere radius is rcutoff

of the NLPS. Since the rcutoff can be rather small and ENL

also corrects the KEDF errors inside the spheres, the actual
radii of the MT spheres are essentially determined by the
magnitude of acceptable errors for a given simulation and
as well as the quality of the KEDF employed. If the KEDF
is accurate enough to describe a larger interstitial region,
the MT sphere radius can be smaller, perhaps as small as
the rcutoff .

III. DERIVING BASIS FUNCTIONS FROM BULK
OR MOLECULAR KSDFT CALCULATIONS

An accurate description of the important MT sphere region
critically depends on the quality of the basis functions, which
are fixed throughout the AMD-OFDFT calculations. In this
section, we propose a method to derive the atom-centered basis
functions ψR,lm from a NLPS-based KSDFT calculation of a
target system. For each element, basis functions are determined
by numerical integration of the Schrödinger equation[

−∇2

2
+ V (rR) + δV l

i-e,R(rR) − εl
R

]
ψR,lm = 0, (15)

where V (rR) is the spherical effective potential composed
of the spherical part of the Hartree potential, the local
pseudopotential, and the XC potential, δV l

i-e,R(rR) is the
nonlocal part of the ion-electron pseudopotential, and εl

R is the
energy value at which we solve the differential equation for
ψR,lm. To solve Eq. (15), we have to know two basic quantities:
the spherical potential V (rR) and the energy εl

R . The choice of
these quantities is critical for the accuracy of our calculation
and the transferability of the basis functions. One may obtain
approximations for both of these quantities from a single-atom
KSDFT calculation. However, this solution does not include
the correct chemical environment of the solid and thus can
not yield satisfactory accuracy and transferability. Instead, we
obtain V (rR) and εl

R from KSDFT calculations in a chemical
environment similar to the one we are interested in simulating
with OFDFT, to minimize errors due to the use of a finite set
of ψR,lm. In this way, we properly account for the effect of
the chemical environment in solids or molecules in the basis
functions.

We expand the bulk (or molecular) V (�rR) in terms of
spherical harmonics as

V (�rR) =
∑
lm

Vlm(rR)Ylm(�̂rR). (16)

We are only interested in the spherical component of V (�rR) for
use in Eq. (15). To obtain this component, we first calculate
V (�rR) including the Hartree, local pseudopotential, and XC
potentials on a 3D uniform grid by a self-consistent KSDFT
calculation with the same NLPS as Eq. (15). Then we make a
fast Fourier transform (FFT) to obtain

V ( �G) = FFT[V (�rR)]. (17)

After calculating the potential in reciprocal space (i.e., on the
�G grid), the spherical V (rR) on a radial grid is obtained by the
integration

V (rR) = 1

4π

∫
dr̂R

∫
V ( �G)ei�rR · �Gd �G, (18)

in which we first do an inverse Fourier transform followed by a
spherical average to obtain the spherical potential. The above
double integration can be reduced to a Bessel transform

V (rR) =
∫

V ( �G)eirR ·G sin(GrR)

GrR

d �G. (19)

To solve Eq. (15), we still need to determine the appropriate
energy values εl

R for each l channel. This is achieved by
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obtaining the local density of states nl
R(E) within the MT

sphere radius centered on R from the above KSDFT-NLPS
calculation, and evaluating εl

R as the average energy of each
angular momentum channel l,

εl
R =

∫ EF

−∞
E

nl
R(E)

Nl
R

dE, (20)

where Nl
R is the total occupation number in channel l,

Nl
R =

∫ EF

−∞
nl

R(E)dE. (21)

All KSDFT calculations are carried out using the ABINIT

package [46]. After obtaining εl
R and VR(rR), the Schrödinger

equation (15) is solved by integrating from rR = 0 outward to
the atomic sphere radius using the fourth-order Runge-Kutta
method (no boundary condition is needed since it is not an
eigenstate problem) [47]. We find that the basis functions
derived in this way exhibit good transferability within similar
chemical environments (see Sec. IX). Note that our AMD-
OFDFT formalism would in principle allow for multiple radial
basis functions {φ(1)

R,l,φ
(2)
R,l, . . .} for each l channel to obtain

higher accuracy, as usually done, e.g., for Gaussian basis sets
in quantum chemistry. However, we only use one radial basis
function for each l channel in the applications presented herein.

IV. DIRECT MINIMIZATION OF THE TOTAL
ENERGY FUNCTIONAL

Given a set of atom-centered basis functions inside the MT
spheres and AMD energies El

R , V l
R , Ul

R , and Kl
R for each

atomic sphere, the total energy functional in Eq. (4) can be
directly minimized to obtain the ground-state electron density
for a fixed ion configuration. To ensure that the total number of
electrons is conserved, we perform a constrained minimization
of EOF[{NR},ρI ] by applying a Lagrange multiplier μ:

L[X] = E[X] − μ(Ntotal[X] − N0). (22)

Here, μ defines the chemical potential, the variable X =
{NR},ρI , and N0 is the total number of electrons contained
in the system. Ntotal[X] is the electron number functional
expressed as

Ntotal[X] =
∫

interstitial
ρI (r)dr +

∑
R

∑
lm

NR,lm,lm

×
∫

MT,R

ψ∗
R,lm(�rR)ψR,lm(�rR)drR.

Only the diagonal part of the onsite density matrix contributes
in the above equation because all the off-diagonal elements
are eliminated by orthogonality of the different spherical
harmonics.

To satisfy the Pauli exclusion principle, we normalize the
basis functions inside the MT spheres and then constrain the
onsite density matrix to ensure the occupation of each lm

channel always lies between zero and one:

0 � NR,lm,lm � 1. (23)

In addition, the same constraint has to be applied to the
occupation in each grid cell

0 � ρIdV � 1, (24)

where dV is the volume of the unit cell of a uniform grid. To
satisfy the above constraints during the minimization process,
we rewrite the density matrix N and the interstitial density
using the McWeeny purification function [48]

NR = 3M2
R − 2M3

R (25)

and

ρIdV = (
3Q2

I − 2Q3
I

)
, (26)

where MR and QI are, respectively, the auxiliary onsite density
matrix and the auxiliary interstitial charge, which directly
yield the physical density matrix and interstitial charge. By
setting the initial values for the auxiliary quantities MR and
QI within the range [0, 1], the constraints in Eqs. (23) and (24)
are satisfied automatically during the minimization [48]. Our
working variables in Eq. (22) are changed to Y = MR,QI ,
yielding

L[X[Y ]] = L[Y ] = E[Y ] − μ(Ntotal[Y ] − N0). (27)

Direct minimization of L[Y ] can be carried out using gradient-
based methods, such as conjugate gradient [49] or quasi-
Newton methods [50]. The total energy minimum is obtained
when

dL

dY
= dE

dY
− μ

dNtotal

dY
= 0. (28)

For technical details of the minimization, see Appendix B.
Finally, we briefly consider the smoothness of the ground-

state electron density at the sphere boundary. There are two
mechanisms that can drive the electron density to smoothness
in the MT geometry: (i) as outlined in Sec. II, the AMD-
OFDFT total energy is derived based on a rigorous hybrid KE
model. In this hybrid KE model, the KE energy density and the
KE potential are continuous at the MT sphere boundary. Since
a discontinuous total energy density (or its derivatives) can
induce discontinuities in the electron density (or its gradients),
the hybrid KE model provides a basis for the continuity
of the electron distribution at the minimum of total energy.
(ii) Using the vW KEDF (contained in the modern two-point
KEDFs [22–24]) further drives the density and its gradient
to smoothness. A large gradient in the density gives a large
positive vW KE contribution, and thus will increase the
total energy. The total energy minimization procedure thus
smoothens the electron density by optimizing its gradient.

V. A WEIGHTED KEDF FOR THE ENTIRE SYSTEM
WITH REDUCED ERRORS

A sophisticated KEDF model is critical for accurately de-
scribing the electron density in the interstitial region, especially
for systems containing localized electrons. In addition, it is
also very important to have a KEDF model with reduced
nonlinear errors inside the MT spheres, so that the form
of ENL in Eq. (14) can be more accurate and more easily
determined. The KEDFs currently available do not properly
treat the rapid density variations that occur in the core region.
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In this section, we therefore introduce two general strategies to
improve the KEDF model: (i) a weighting function to suppress
the (inaccurate) KEDF contributions inside the MT spheres;
(ii) pseudized basis functions for the highly localized electron
channel dominant in the core region.

Among the linear-response-function-based two-point
KEDFs [22–24], the Wang-Govind-Carter (WGC99)
KEDF [24] exhibits comparatively high accuracy due to
its double-density-dependent response kernel. The WGC99
KEDF can be written as

T KEDF
s [ρ] = T TF

s [ρ] + T vW
s [ρ] + T NL

s [ρ],

T TF
s [ρ] = CTF

∫
ρ5/3(�r)d�r,

(29)

T vW
s [ρ] = 1/8

∫
[∇ρ(�r)]2/ρ(�r)d�r,

T NL
s [ρ] =

∫
ρα(�r)k[ρ(�r),ρ(�r ′),�r,�r ′]ρβ(�r ′)d�rd�r ′,

where T TF
s [ρ] is the Thomas-Fermi KEDF [20], T vW

s [ρ] is
the von Weizäcker KEDF [21], and T NL

s [ρ] is a nonlocal
term introduced to yield the correct linear response of the
system. The nonlocal kernel k[ρ(�r),ρ(�r ′),�r,�r ′] is determined
by enforcing the Lindhard response at the limit of a uniform
electron gas [22–24]. The direct application of this KEDF
to inhomogeneous or strongly localized electron densities
can result in large quantitative (or even qualitative) errors
in electronic structure and material properties compared to
KSDFT [40].

To obtain a better description of localized electrons that
are tightly bound in the core region, we exploit the hybrid
scheme based on the MT geometry. We introduce a weighted
KEDF model: we scale available KEDFs using a weighting
function W (�r), which equals one inside the interstitial region
and smoothly decays to zero inside the MT spheres. W (�r) can
be written as

W (�r) = 1 −
∑
R

wR(rR). (30)

We choose the smooth function wR(rR) to be

wR(rR) = {
1 − erf

[
BR

(
rR + rw

R

)]}/
2, (31)

where erf is the error function, and 0 � w(rR) � 1. The
parameters BR and rw

R are chosen by giving function values
at the MT sphere boundary rR = W1R of wR(W1R) ≈ 0, and
at an inner radius rR,1 < W1R of wR(rR,1) � 1 [see Fig. 2 for
wR(rR)]. Utilizing W (�r), we obtain a weighted KEDF model
as follows:

T TF
s = CTF

∫
W (�r)ρ5/3(�r)d�r,

T vW
s = 1/8

∫
W (�r)

[∇ρ(�r)]2

ρ(�r)
d�r,

T NL
s =

∫
W (�r)ρα(�r)k[ρ(�r),ρ(�r ′),

�r,�r ′]ρβ(�r ′)W (�r ′)d�rd�r ′ + C, (32)

where C is introduced so that the KEDF can satisfy some
limiting conditions discussed below. The validity of this

FIG. 2. (Color online) (a) Weighting function wR(rR) inside the
MT sphere with sphere radius W1R = 2.2 bohr, generated with
wR(W1R) = 0.001 and wR(rR,1) = 0.75 (rR,1 = 1.4 bohr) for the
KEDF model in Eq. (32). (b) The original (solid line) and pseudized
(dashed line) localized d radial basis function.

weighted KEDF method within AMD-OFDDFT is guaranteed
by ENL, which corrects errors caused by approximate KEDFs
inside the MT region. Since we now downscale the (inaccurate)
KEDF contributions from the MT sphere region, the associated
errors decrease and can be more accurately accounted for by
ENL. Consequently, determining the AMD energies in ENL of
Eq. (14) becomes easier because of the smaller magnitude of
V l

R , Ul
R , and Kl

R . Moreover, the weighted KEDF method can
provide a more accurate description of the interstitial region
because the effect of the rapidly varying electrons in the core
region contributes less to the KEDF.

However, the behavior of the weighted KEDFs requires
further consideration: in the uniform electron gas limit, the
contribution from T NL

s should be zero. To satisfy this limit, we
add an extra term C to T NL

s in Eq. (32), yielding∫
ρα

CW (�r)k[ρ(�r),ρ(�r ′),�r,�r ′]W (�r ′)ρβ

Cd�rd�r ′ + C = 0, (33)

where ρC is a constant density. However, for ρ �= const, the
functional form of C[ρ] is unknown. The above equation exists
only in the uniform electron gas limit. For the present work,
we approximate C as a constant. A future careful choice of
the functional C[ρ] might result in further improvements in
material properties. Note that C arises from the use of T NL

s .
Thus, for local or semilocal KEDFs, there is no such concern
about the term C[ρ].

Because of the significant contribution of localized elec-
trons to the total electron density, directly applying the
weighted KEDFs to the whole density may still produce
some errors, e.g., in the computation of the required average
electron density ρ0 for the response kernel in T NL

s [23,24]. As
an additional strategy for improving accuracy, we therefore
introduce a pseudized wave function for the localized electron
channel, similar to the density decomposition scheme used for
the OFDFT treatment of Ag [39]. Inside the MT spheres, we
scale the basis function φR,l to obtain a pseudized φ̃R,l :

φ̃R,l(rR) = gR(rR)φR,l(rR), (34)

where φ̃l(rR) is the pseudized smooth basis function, and
gR(rR) is a smoothing function. gR(rR) can be chosen in many
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different ways. Here, we simply choose

gR(rR) = {
1 + erf

[
DR

(
rR + r

g

R

)]}/
2. (35)

The parameters DR and r
g

R can be determined from function
values at the sphere boundary rR = W1R and the radial
point having the maximum amplitude of the basis function
rR = rmax:

gR(W1R) � 1, gR(rmax) = κ,

where gR(W1R) is slightly below one, to ensure that the
smoothed wave function is quickly restored to its original
values outside W1R , so that the resulting error is negligible
outside. The value κ determines the shape of the pseudized
basis function inside the MT sphere. Its optimal value can
be determined such that ρ0 ≈ 〈ρI 〉I , where 〈. . .〉I denotes an
average over the interstitial region. Note that smoothing is
only required for the strongly localized d channel in transition
metals, i.e., g(r) = 1 for the s and p channels in transition
metals.

After the above pseudization of the localized electron basis
function, we can write the smoothed total electron density as

ρ̃total =
∑
R

ρ̃R + ρI , (36)

where ρ̃R = ∑
lm,l′m′ NR,lm,l′m′ψ̃Rlmψ̃Rl′m′ is the smoothed

density inside the MT sphere. Obviously, ρ = ρ̃ in the
interstitial region.

We thus use the rescaled T KEDF[ρ̃] of Eq. (32) operating on
a smooth electron density. By using pseudized localized basis
functions, we can further reduce the unphysical interactions
between delocalized and localized channels as discussed in
Secs. I and II.

VI. SEARCHING FOR THE ANGULAR MOMENTUM
DEPENDENT ENERGIES

We now introduce our method for finding a set of optimal
AMD energies PR = {El

R,V l
R,Ul

R,Kl
R} for use in Eq. (14). As

our current objective is an improved treatment of transition
metals, here we only consider V l

R , Ul
R , and Kl

R nonzero for the
localized d channel, although generalization to other elements
is straightforward. We aim to find these six optimal AMD
energies, i.e., E

l=s,p,d

R , V d
R , Ud

R , and Kd
R , by reproducing a

small set of benchmark material properties determined by
KSDFT-NLPS calculations using our AMD-OFDFT ansatz.
We minimize the deviation

F [PR] =
N∑

i=1

Ci

[
XOF

i [PR]

XKS
i

− 1

]2

,

where X
OF/KS
i denotes the ith property value derived from

OFDFT and KSDFT, respectively. The benchmark properties
may include occupation numbers of each l channel within the
MT spheres, the equilibrium volume, the bulk modulus, and the
energy differences between different structures. The parameter
Ci weights the importance of property Xi . The feasibility of
this optimization is ensured by the high numerical efficiency
of OFDFT. In principle, the more properties included in F ,
the more transferable the energies PR become. Conversely,
a set of values PR should be tested for transferability against

properties not included in F . Thus we do not include properties
of all structures but rather just fit to a minimal subset. We will
demonstrate the transferability of the AMD energies in Sec. IX.
Because Ud

R and Kd
R account for different physics than E

l=s,p,d

R

and V d
R , our searching procedure is divided into two steps: we

first search for a set of PEV
R = {El

R,V d
R } and then optimize

PUK
R = {Ud

R,Kd
R} for improved properties at the fixed PEV

R

found in the first step.
A good set of El

R and V d
R must yield occupations compa-

rable to KSDFT for each l channel and a total energy close to
that from a KSDFT-NLPS calculation. This condition already
proves quite stringent, strongly restricting useful values of
El

R and V d
R . The narrow range of these energies represents a

challenge for applying global or local optimization methods,
such as simulated annealing or simplex methods, without
providing a good starting point. To find El

R and V d
R , we thus

adopt a simple adaptive-grid-based searching method that first
considers only the occupation numbers: we calculate F on a
uniform grid of E

p

R , Ed
R , and V d

R values. For each grid point
[Ep

R,Ed
R,V d

R ], a change in Es
R changes the occupation numbers

of all the channels. The monotonic dependence of Ns on Es
R

(i.e., Ns will always increase for decreasing Es
R) provides a

way to quickly determine the bounds of Es
R within which

our OFDFT method gives satisfactory occupation numbers
in comparison to KSDFT-NLPS calculations (see Fig. 3). For
points within this Es

R region, we then calculate the equilibrium
volume and bulk modulus for a simple geometry, such as bulk
fcc Ti. Only if these two properties compare well to KSDFT
do we continue to calculate additional properties to fit against.
We finally identify the PEV

R with the smallest error F . We find
that the AMD values determined with this algorithm already
reproduce the KS benchmark surprisingly well (see Sec. IX).
To further refine the values PEV

R , one may carry out a local
optimization using, e.g., a simplex algorithm.

Nonzero values for Ud
R and Kd

R further improve the electron
distribution within the localized d channel, yielding more
accurate properties. In a second step, we search for PUK

R on a
uniform grid to further improve properties, such as the energy
differences between a variety of bulk phases of titanium (see
Sec. IX).

FIG. 3. Adaptive grid method for optimizing El
R and V d

R .
(a) Uniform grid for E

p

R , Ed
R , and V d

R variables. (b) At a point [Ep

R ,
Ed

R , V d
R ], we determine the upper and lower bounds for Es

R using a
coarse grid and then search for an appropriate Es

R value on a finer
grid between the bounds.
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Once obtained for a given chemical element, the set of
AMD energies, combined with the associated basis functions
and scaling parameters for the KEDF, can be used for AMD-
OFDFT simulation of materials containing that element, much
like a pseudopotential. We envision a library of AMD energies
and basis functions for the convenient use of AMD-OFDFT.
Providing well-tested, transferable parametrizations for the
most common elements is ongoing work, that will ultimately
extend the applicability of OFDFT.

VII. FORCE FORMULA WITH PULAY CORRECTIONS

Given the force on the ions, we can optimize the ion
positions to obtain an equilibrium geometry or we can carry
out molecular dynamics simulations. For a general total energy
functional Etotal[ρ,R], the force on an ion at position R is
written as

FR = −∂Etotal[ρ,R]

∂R
−

∫
δEtotal[ρ,R]

δρ

dρ

dR
dr. (37)

Here, the first and second terms are the Hellmann-Feynman
and Pulay forces, respectively. The Pulay force arises from
the atom-centered basis functions that explicitly depend on
R. By adding the ion-ion interaction energy, the total energy
functional becomes

Etotal[{NR},ρI ,R] = T KEDF
s [ρ] + EH[ρ] + EXC[ρ]

+ELPS
i-e [ρ,R] + ENL[{NR}] + Ei-i[R].

(38)

Thus {NR}, ρI , and R are three independent variables in
Etotal. The energy terms ELPS

i-e and Ei-i explicitly contain the
ion position R. Also, the applied KEDF model contains R

explicitly because of the weighting function W (�r) of Eq. (30)
introduced in Sec. V. Note that the nonlocal energy ENL

in Eq. (14) has no explicit dependence on R because the
AMD energies, once obtained, are subsequently kept constant
during the electronic structure optimization. Additionally, the
NR are independent variables in Etotal. Thus, ENL yields no
contribution to the force. Consequently, the force formula in
Eq. (37) is explicitly rewritten as

FR = −dEi-i

dR
− ∂Ei-e,local

∂R
−

∫
δT KEDF

s

δW

dW

dR
d�r

−
∫ (

VKEDF + VH + V LPS
i-e + VXC

)dρR

dR
dr, (39)

where we use the energy functional derivative in
Eq. (B8) and dρ

dR
= dρR

dR
since ρI is independent of R.

According to Eq. (32), δT KEDF
s

δW
= CTFρ

5/3(�r) + [∇ρ(�r)]2

8ρ(�r) +∫
ρα(�r) k[ρ(�r),ρ(�r ′),�r,�r ′] ρβ (�r ′) W (�r ′) d �r ′ + ∫

ρβ(�r) k[ρ(�r),
ρ(�r ′),�r,�r ′]ρα(�r ′)W (�r ′)d �r ′.

As ρR is given by Eq. (2), the quantity dρR/dR can be
expressed as

dρR

dR
= −

∑
lm,l′m′

NR,lm,l′m′

[
ψ∗

R,lm(�rR)
dψR,l′m′ (�rR)

d�rR

+ψR,l′m′(�rR)
dψ∗

R,lm(�rR)

d�rR

]
, (40)

by using ∂�rR

∂R
= −1 since �rR = �r − R. Although NR is indexed

with R, it does not explicitly depend on R as mentioned above.

VIII. A DOUBLE-SPHERE TECHNIQUE

To preserve the simplicity of OFDFT in practical imple-
mentations of the MT geometry, the basis functions inside the
MT spheres are represented on a 3D uniform Cartesian grid
by projecting from a radial mesh. From Sec. II we see that
the basis functions are introduced inside the MT spheres but
not in the interstitial region. Special care must be taken to
properly treat the resulting discontinuity of the basis functions
at the sphere boundary. Otherwise, this nonconforming grid
problem (i.e., the mismatch between the sphere boundary and
the Cartesian interstitial grid) will cause serious numerical
instabilities for the convergence of the total energy with respect
to grid size. In particular, small variations in geometry can
produce artifacts, resulting in discontinuous energy curves.
This problem becomes severe for basis functions with large
amplitudes at the sphere boundary. In the following, we devise
a double-sphere technique to solve this numerical problem.
As shown in Fig. 4, we introduce inner and outer spheres
with respective radii W1R and W2R centered on R: the basis
functions are used within W2R and they are reduced between
W1R and W2R . In our double-sphere technique, the basis
functions are modified as

φ̄l(rR) = φl(rR)f (rR). (41)

Here, the function f (rR) is introduced to smoothly decrease
the amplitude of the basis function for rR > W1R . We choose
the form

f 2(r) = {
1 − erf

[
AR

(
rR − r

f

R

)]}/
2.0, (42)

where the parameters AR and r
f

R are determined by the function
values f (W1R) and f (W2R). The φ̄(rR) are truncated outside
the outer sphere. Both f (W2R) and W2R need to be chosen to
reduce numerical noise (induced by the representation of the
spheres on the uniform grid) below the accuracy requirement.

FIG. 4. (Color online) Double-sphere technique: the basis func-
tions smoothly decrease in the region between W1R and W2R ,
increasing numerical stability. Black curves: original basis functions
φl ; red curves: modified basis functions φ̄l . Solid lines: s channel;
dashed lines: d channel.
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We set f (W1R) � 1, so that the modified function φ̄(rR) is
quickly restored to the original φ(rR) for rR < W1R , such that
the difference between φ̄ and φl is negligible within the inner
sphere. In the geometry with atom-centered double spheres, the
electron density inside the inner sphere is expressed only by φ̄,
while the interstitial region starts at the inner-sphere boundary
W1R , and thus the electron density outside the inner spheres
is given as a sum of the modulus squared of the reduced basis
functions of Eq. (41) and ρI . We need to choose the sphere
radii W1R and W2R so that no outer sphere overlaps with any
other inner sphere. The introduction of the double spheres does
not change the formalism and physics we discussed above, but
significantly increases numerical stability.

An accurate evaluation of the potential matrix elements
∂E/∂NR [see Eqs. (B3), (B4), and (B8)] by numerical
integration within the double spheres can further increase
numerical stability. The rapid spatial variations of the function
f 2(r) [(obtained from the product of the basis functions
ψ∗

R,lmψR,l′m′ in the expression of the density in Eq. (2)]
require a fine grid to correctly capture the fast change in
value between W1R and W2R . However, we know the original
basis functions φR and the energy potential δE/δρ are both
slowly varying functions which can be accurately represented
on a coarse grid. To reduce demands on grid discretization
and maintain accuracy in the evaluation of ∂E/∂NR , we first
project f 2(r) from a radial grid onto a 3D uniform grid,
which is two times denser than the coarse working grid on
which we calculate the total energy and the corresponding
potential. We then downsample f 2(r) from the twice denser
grid to the coarse working grid by a simple 3D interpolation
[see Fig. 5(a)]. As shown in Appendix C and Fig. 5(b), the
accuracy obtained can be similar to a calculation performed
directly on the denser grid, while retaining the convergence

FIG. 5. Double-grid technique. (a) Downsampling the f (r) from
a two times denser grid to a coarse grid on which we calculate the
total energy and potentials. (b) Example for integral

∫ B

A
f (x)g(x)dx:

(1) smooth function g(x); (2) fast changing f (x); (3) projecting f (x)
onto a coarse grid directly; (4) projecting f (x) onto a two times
denser grid and then downsampling to the coarse grid.

speed of optimization on the coarser grid. It should be
mentioned that the downsampling procedure is done only once
before starting the total energy optimization. Consequently, the
downsampling procedure increases numerical stability with
negligible computational cost.

IX. COMPUTATIONAL DETAILS AND RESULTS

The entire AMD-OFDFT formalism outlined above has
been implemented within PROFESS 2.0, a state-of-art OFDFT
software package [51]. For implementation details for the
Hartree, XC, LPS, and KEDF energies and the corresponding
potentials, please refer to Ref. [52]. Here, we apply AMD-
OFDFT to calculate various properties of the transition metal
titanium and compare with other levels of approximation,
to demonstrate the formalism and the associated numerical
implementation.

In all our calculations, we use the Perdew-Burke-Ernzerhof
(PBE) [53] form of the generalized gradient approximation as
the exchange-correlation functional. Our KSDFT calculations
are carried out using the ABINIT [46] software package. The
Troullier-Martins (TM) form [54] of the NLPS with a nonlinear
core correction [55] is used, as generated by the FHI98 code [56]
with rcutoff = 2.2 bohr for all l channels and rnlc = 1.2 bohr as
the cutoff radius for the core electron density. In KS-NLPS
calculations, we use a plane-wave basis KE cutoff Ecut =
1600 eV (equivalent to 6400 eV in PROFESS 2.0) for the different
Ti bulk phases, and the following Monkhorst-Pack grids [57]
for k-point sampling: 30 × 30 × 20 for hcp, 30 × 30 × 30
for fcc and bcc, and 26 × 26 × 26 for sc, within unit cells
containing two, one, two, and one atoms, respectively.

The bulk-derived local pseudopotential (BLPS) [34] used in
KS-BLPS and conventional OF-BLPS calculations is obtained
by inverting the KS equations according to the procedure
outlined in Ref. [35]. We use the Ti bcc phase for this inversion
because we found that the hcp and fcc phases generate very
scattered potential points. We also include the nonlinear core
correction in the construction of the BLPS. The KS-BLPS
calculations are done by ABINIT with the same plane-wave
basis KE cutoff and k-point sampling as we use for the
KS-NLPS calculations. Recall that OFDFT calculations do
not require k-point sampling. For the conventional OF-BLPS
calculation, we use a plane-wave basis KE cutoff of 6400 eV
in PROFESS 2.0. For the AMD-OFDFT calculations, we use
the s channel of the TM NLPS as the local pseudopotential;
in this case, the plane-wave basis KE cutoff to converge
the total energy with an error below 0.5 meV per titanium
atom is 11 000 eV; although this cutoff sounds extreme, the
calculations are very efficient, several orders of magnitude
faster than KSDFT calculations. (We do not quote timings
in this paper as the AMD-OFDFT code has not yet been
optimized.) The basis functions inside the MT spheres are
derived from a KS-NLPS calculation of the Ti fcc phase at
its equilibrium lattice structure, using the method presented in
Sec. III. We use W1R = 2.2 bohr (same as rcutoff of the NLPS)
for the MT inner-sphere radius and W2R = 2.7 bohr for the
outer-sphere radius. f 2(W1R) = 0.995 and f 2(W2R) = 0.1
are used to solve for the parameters in Eq. (42) to achieve good
numerical stability. Other choices of 0.1 � f 2(W2R) � 0.3
produce negligible changes in the total energy when using
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TABLE I. Function values used to determine the scaling functions
wR and gR , and resulting parameters.

wR [see Eq. (31)]

wR(W1R) 0.001 wR(W1R − 0.8) 0.75
BR 3.35 rw

R (bohr) 1.53

gR [see Eq. (35)]

gR(W1R) 0.995 wR(rmax) 0.75
DR 0.90 r

g

R (bohr) 0.31

the same AMD energies. A change in the shape of the basis
functions between W1R and W2R only changes ρI during the
total energy optimization but not the final total energy value.
Values to determine the scaling functions wR and gR are listed
in Table I. Changing these values is compensated by a change
of the AMD energies in ENL. Consequently, suitable parameter
ranges are large: the choices of wR(W1R − 0.8) � 0.55 and
gR(rmax) � 0.45 all give results very close to what we present
here.

We use the search procedures presented in Sec. VI to
determine the AMD energies E

l=s,p,d

R , V d
R , Ud

R , and Kd
R

by considering the following small set of properties of Ti
described within KSDFT: the fcc occupation numbers N fcc

l

for each l channel, the fcc equilibrium volume V fcc
0 , the

fcc bulk modulus Bfcc
0 , the phase ordering energy 	Efcc-hcp

between fcc and hcp, and the absolute value of the fcc
total energy. We denote use of only the first two terms of
ENL in Eq. (14) with AMD-OF1 while AMD-OF2 denotes
use of all terms of ENL. We obtained the following set of
AMD energies after fitting: Es

R = −0.1133,E
p

R = 0.02,Ed
R =

−0.38,V d
R = 0.1,Ud

R = 0.252, and Kd
R = 0.5 hartree. Using

these parameters within AMD-OFDFT reproduces the KSDFT
benchmark properties very well. We reported in Ref. [41] that
calculations using this set of AMD energies deviate by 1% and
5% from the KS Ti fcc equilibrium volume and bulk modulus,

FIG. 6. (Color online) Energy versus volume for the Ti hcp
phase, for five different theories (see text for details). Energy shifts
of the total energy of the Ti hcp phase for the different levels of
approximation are (in eV/atom) KS-NLPS: −268.410; KS-BLPS:
−281.529; OF-BLPS: −279.672; AMD-OF1: −268.364; and AMD-
OF2: −268.451.

FIG. 7. (Color online) Energy versus volume for the Ti fcc phase,
for five different theories.

respectively. Moreover, the phase ordering energy between
fcc and hcp is quantitatively reproduced by AMD-OF2. We
demonstrated good transferability of the AMD energies by
applying them to bulk properties of Ti hcp, bcc, and sc phases,
as well as the formation energies of a monovacancy in hcp Ti
and of Ti hc(0001), fcc(100), and bcc(100) surfaces [41]. Here,
we provide further tests of the model by investigating various
types of mechanical deformations and comparing different
levels of approximation. To further demonstrate the validity
of the AMD-OFDFT formalism, the deformations applied
here are much larger than normally used for calculating bulk
properties (e.g., as presented in Ref. [41]).

Figures 6–9 show energy versus volume curves for Ti bulk
hcp, fcc, bcc, and sc phases using different levels of DFT
approximation. We shift the total energy of the ground-state
hcp phase to zero for each theory, as shown in Fig. 6. It is clear
that all methods produce smooth curves for all bulk phases
investigated (as also shown in Figs. 10–13). This smoothness
provides a strong test for the numerical stability of the AMD-
OFDFT formalism. AMD-OFDFT substantially improves all
results over the conventional OF-BLPS (see Figs. 6–9), e.g.,

FIG. 8. (Color online) Energy versus volume for the Ti bcc phase,
for five different theories.
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FIG. 9. (Color online) Energy versus volume for the Ti sc phase,
for five different theories.

the equilibrium volume and the energy response to system
changes (see the curvature of the curves). In particular,
conventional OFDFT volume predictions deviate about −20%
from the KS-NLPS for all Ti phases, while our AMD-OF
results produce equilibrium volumes only −1% smaller than
KS benchmarks for hcp, fcc, and bcc phases and +4% for the
sc phase. AMD-OFDFT produces a slowly changing energy
curve in very good agreement with KS-NLPS, while OF-BLPS
calculations exhibit much faster energy changes (i.e., too high
bulk moduli) for all phases. For example, OF-BLPS predicts
bulk moduli with about +100% error compared to AMD-
OFDFT calculations that are very close to the benchmarks. In
addition, conventional OFDFT, with its approximate KEDF
and use of a BLPS, predicts a wrong phase ordering between
fcc and bcc phases compared to KS-NLPS [41].

Although the KS-BLPS model, with its accurate KE,
predicts accurate equilibrium volumes, energy versus volume
curves, and qualitatively correct energy orderings between
different phases, our numerically much faster AMD-OFDFT
results are even closer to the KS-NLPS benchmarks. From the
above comparison, we see that our AMD-OFDFT formalism

FIG. 10. (Color online) Energy versus strain x in hcp Ti. The
applied strain mode is (1 + x,0,0; 0,1 + x,0; 0,0,1).

FIG. 11. (Color online) Energy versus strain x in hcp Ti. The
applied strain mode is (1 + x,0,0; 0,1 − x,0; 0,0,1).

provides an effective way to include the influence of an
NLPS (hence the superior results compared to KS-BLPS)
and to correct KE errors in KEDFs (hence the far superior
results compared to OF-BLPS) in order to achieve an accurate
description of system properties. The failure to describe the
hypothetical sc Ti phase sufficiently well (see Fig. 9) is likely
due to its much lower coordination number (six) compared to
the other phases. The limit of transferability has been reached
in this case and motivates future refinements to the model
discussed earlier.

To understand the role of the AMD energies, we also
compare the predictions of AMD-OF1 and AMD-OF2 in
Figs. 6–9. It is evident that even with only the first two
terms containing El

R and V d
R in ENL, AMD-OF1 reproduces

very well the equilibrium volume and energy versus volume
curves for Ti’s hcp, fcc, and bcc phases compared to KS-NLPS
benchmarks. However AMD-OF1 exhibits a +10% deviation
from KS-NLPS for the equilibrium volume of sc Ti and a
wrong phase ordering between Ti hcp and fcc phases, with a
very small energy difference [41]. By including Ul

R and Kl
R

in AMD-OF2 to correct the delocalization error in the KEDF

FIG. 12. (Color online) Energy versus strain x in hcp Ti. The
applied strain mode is (1,0,x; 0,1,0; x,0,1).
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FIG. 13. (Color online) Energy versus strain x in hcp Ti. The
applied strain mode is [1,0,0; 0,1,0; 0,0,1 + x].

(see Sec. II), we achieve the correct phase ordering (even the
energy differences for fcc, bcc, and sc become comparable to
KS-NLPS predictions), and an improved equilibrium volume
for the Ti sc phase. Thus, corrections to the delocalization
error are critical to reflect the effect of symmetry changes on
properties.

Up to now, we have only examined the energy response to
isotropic deformations of the bulk phases. To further evaluate
the quality of the AMD-OFDFT formalism, we investigate
other deformations of the ground-state hcp phase of Ti (see
Figs. 10–13). We consider four independent deformation
modes of the equilibrium hcp structure, with strain up to
±6%: Figs. 10 and 11 are for two independent deformations
on the basal plane while keeping the other axis constant;
Fig. 12 is for a pure shear deformation; Fig. 13 is for uniaxial
deformations along the direction perpendicular to the basal
plane. For details about the different types of deformations, see
Ref. [19]. It is clear that our AMD-OFDFT approach agrees
very well with KS-NLPS calculations, while conventional
OFDFT significantly overestimates the energy increase with
strain. The agreement seen here provides the foundation for
AMD-OFDFT simulations of the mechanical properties of
materials containing transition metals. AMD-OFDFT energy
curves agree with KS-NLPS results for a wide range of
deformations, providing a strong confirmation that the AMD-
OFDFT formalism greatly improves the system density and
the linear response function [3].

X. SUMMARY

We have shown that AMD-OFDFT substantially improves
the accuracy of OFDFT for describing the transition metal
Ti, and that the method exhibits quite good transferability. The
accuracy and transferability of AMD-OFDFT is determined by
the quality of ENL (i.e., the AMD energies), the KEDF model,
and the basis functions within the MT spheres. At present, we
treat the AMD energies as constants for a given element and
determine them by fitting to KS-NLPS benchmarks, neglecting
their dependence on occupation numbers that may change
as the system deforms. Nevertheless, we have demonstrated
that the constant AMD energies feature good transferability.

As we show in Sec. II, the good transferability is confirmed
by a closer inspection of ENL: the AMD energies depend
only weakly on the small occupations of the delocalized
channels (such as the s and p channels in transition metals),
which are sensitive to system changes [41]. Although they
do depend on the occupation of the localized channels (such
as the d channel in transition metals), this occupation is not
strongly influenced by system changes. Treating the AMD
energies as constants is thus a good approximation. Future
work considering the dependence of the AMD energies on
the occupations may further enhance their transferability and
accuracy. The generality of our AMD-OFDFT method also
relies on the KEDF model. Modern two-point KEDFs [22–24]
should be accurate enough to describe the interstitial region
in different structures of at least any kind of metal and recent
work has shown [26] that a density decomposition permits a
modern KEDF (WGC99) [24] to also describe the interstitial
regions in semiconductors. The accuracy of AMD-OFDFT
is also related to the quality of the basis functions employed
inside the MT spheres. For example, the AMD energies depend
on the basis functions (see Appendix A), whose quality in turn
determines how accurately the important ionic core region is
represented. We derive ψR from KSDFT NLPS calculations
of a suitable target system to explicitly consider the effect of
the surrounding electronic structure. The ψR obtained in this
way exhibit good transferability thus far, as we have shown
above and in Ref. [41].

In conclusion, we have developed a general AMD-OFDFT
method via a hybrid scheme based on a muffin tin geometry
and have written the associated computer program for first-
principles OFDFT simulations of materials that can now
include transition metals. The AMD effects of the KE operator
and of the interaction with the ionic cores are treated by using
KSDFT-derived atom-centered basis functions inside the MT
spheres, and by introducing an important nonlocal energy term
to effectively correct the errors in the KEDF and the LPS.
Our results for various properties of Ti show that including
angular momentum dependence is essential for improving
the electronic structure and the system response to external
field changes, and thus system properties: AMD-OFDFT
substantially improves the accuracy and general applicability
of OFDFT. Our present results are all based on the WGC99
KEDF and approximations made to ENL. More sophisticated
KEDFs, or a more elaborate ansatz for ENL, should further
improve the accuracy and transferability of AMD-OFDFT.
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APPENDIX A: DERIVING ENL[NR]

We provide further derivation of the parameters Ud
R and Kd

R

in Eq. (14) by investigating their dependence on the occupation
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numbers. From Ref. [41], we know

U
KEDF,d
R = 4π

∫
MT

δ2T KEDF
s

δρ2

∣∣∣∣
ρ0

R

ρ2
R,dr

2dr. (A1)

To obtain the dependence of U
KEDF,d
R on NR , one can perform a

Taylor expansion for U
KEDF,d
R around N0

R,s/p = 0 for transition
metals. We consider here the TF and vW KEDFs because of
their dominant contributions in the modern two-point KEDFs.

For the TF KEDF, we apply the Taylor expansion to δ2T̃ TF
s

δρ2 |ρ0
R

up to first order around N0
R,s/p = 0. We thus obtain

U
TF,d
R = 4π

∫
MT

δ2T̃ TF
s

δρ2

∣∣∣∣
ρ0

R

ρ2
R,dr

2dr

≈ 4π

∫
MT

[(
N total

R,d

)− 1
3
δ2T̃ TF

s

δρ2

∣∣∣∣
ρR,d

+
∑
l=s,p

(
N total

R,d

)− 4
3
δ3T̃ TF

s

δρ3

∣∣∣∣
ρR,d

N total
R,l ρR,l

]
ρ2

R,dr
2dr

= N
total,− 1

3
R,d BTF

R,d +
∑
l=s,p

N
total,− 4

3
R,d N total

R,l DTF
R,d,l . (A2)

The constants BTF
R,d = 4π

∫
MT

δ2T̃ TF
s

δρ2 |ρR,d
ρ2

R,dr
2dr and DTF

R,d,l =
4π

∫
MT

δ3T̃ TF
s

δρ3 |ρR,d
ρ2

R,dρR,lr
2dr only depend on the fixed basis

functions, and are thus system independent.
For the case of the vW KEDF, we also apply the Taylor

expansion for δ2T̃ vW
s

δρ2 |ρ0
R

up to first order around N0
R,s/p = 0:

U
vW,d
R = 4π

∫
MT

δ2T̃ vW
s

δρ2

∣∣∣∣
ρ0

R

ρ2
R,dr

2dr

= 4π

∫
MT

[
1

N total
R,d

δ2T̃ vW
s

δρ2

∣∣∣∣
ρR,d

+
∑
l=s,p

N total
R,l(

N total
R,d

)2

δ3T̃ vW
s

δρ3

∣∣∣∣
ρR,d

ρR,l

]
ρ2

R,dr
2dr

= 1

N total
R,d

BvW
R,d +

∑
l=s,p

1(
N total

R,d

)2 N total
R,l DvW

R,d,l . (A3)

The constants BvW
R,d = 4π

∫
MT

δ2T̃ vW
s

δρ2 |ρR,d
ρ2

R,dr
2dr and DvW

R,d,l =
4π

∫
MT

δ3T̃ vW
s

δρ3 |ρR,d
ρR,lρ

2
R,dr

2dr are only dependent on the fixed
basis functions, and are thus system independent again. Thus,
we see U

KEDF,d
R can be approximated as

U
TF+vW,d
R ≈ (

N total
R,d

)− 1
3 BTF

R,d +
∑
l=s,p

(
N total

R,d

)− 4
3 N total

R,l DTF
R,d,l

+ (
N total

R,d

)−1
BvW

R,d +
∑
l=s,p

(
N total

R,d

)−2
N total

R,l DvW
R,d,l

≈ (
N total

R,d

)− 1
3 BTF

R,d + (
N total

R,d

)−1
BvW

R,d

+
∑
l=s,p

D̃TF+vW
R,d,l N total

R,l . (A4)

For the parameter K
KEDF,d
R , we have [41]

K
KEDF,d
R = 4π

∫
MT

δ3T̃ KEDF
s

δρ3

∣∣∣∣
ρ0

R

ρ3
R,dr

2dr. (A5)

For the case of TF KEDF, a Taylor expansion around N0
R,s/p =

0 yields

K
TF,d
R = 4π

∫
MT

δ3T̃ TF
s

δρ3

∣∣∣∣
ρ0

R

ρ3
R,dr

2dr

= 4π

∫
MT

[(
N total

R,d

)− 4
3

δ3T̃ TF
s

δρ3

∣∣∣∣
ρR,d

+
∑
l=s,p

(
N total

R,d

)− 7
3 N total

R,l

δ4T̃ TF
s

δρ4

∣∣∣∣
ρR,d

ρR,l

]
ρ3

R,dr
2dr

= (
N total

R,d

)− 4
3 GTF

R,d + (
N total

R,d

)− 7
3 N total

R,l H TF
R,d,l, (A6)

where GTF
R,d = 4π

∫
MT

δ3T̃ TF
s

δρ3 |ρR,d
ρ3

R,dr
2dr and H TF

R,d,l =
4π

∫
MT

δ4T̃ TF
s

δρ4 |ρR,d
ρR,lρ

3
R,dr

2dr are dependent on the radial
basis functions inside the MT spheres.

For the case of the vW KEDF, again, using a Taylor
expansion around N0

R,s/p = 0, we find

K
vW,d
R = 4π

∫
MT

δ3T̃ vW
s

δρ3

∣∣∣∣
ρ0

R

ρ3
R,dr

2dr

= 4π

∫
MT

⎡
⎣ 1(

N total
R,d

)2

δ3T̃ vW
s

δρ3

∣∣∣∣
ρR,d

+ 1(
N total

R,d

)3

δ4T vW
s

δρ4

∣∣∣∣
ρR,d

N total
R,l ρR,l

⎤
⎦ ρ3

R,dr
2dr

= 1(
N total

R,d

)2 GvW
R,d + 1(

N total
R,d

)3 N total
R,l H vW

R,d,l, (A7)

where GvW
R,d = 4π

∫
MT

δ3T̃ vW
s

δρ3 |ρR,d
ρ3

R,dr
2dr and H vW

R,d,l =
4π

∫
MT

δ4T̃ vW
s

δρ4 |ρR,d
ρR,lρ

3
R,dr

2dr are only given by the radial
basis functions inside the MT spheres. Therefore, we have

K
TF+vW,d
R ≈ (

N total
R,d

)− 4
3

⎛
⎝GTF

R,d −
∑
l=s,p

N total
R,l

N total
R,d

H TF
R,d,l

⎞
⎠

+ (
N total

R,d

)−2
GvW

R,d +
∑
l=s,p

(
N total

R,d

)−3
N total

R,l H vW
R,d,l

≈ (
N total

R,d

)− 4
3 GTF

R,d + (
N total

R,d

)−2
GvW

R,d

+
∑
l=s,p

H̃ TF+vW
R,d,l N total

R,l . (A8)

APPENDIX B: DETAILS OF THE TOTAL
ENERGY MINIMIZATION

In each optimization step, for a given Y = {MR},QI , we
need to compute L[Y ] and the corresponding gradient dL/dY
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to calculate the line search direction for updating Y . We
calculate dE/dY by applying the chain rule to the energy
terms including T KEDF

s [ρ], EXC[ρ], EH[ρ], and ELPS
i-e [ρ] in

Eq. (4) as

∂E

∂MR

= ∂E

∂NR

dNR

dMR

; (B1)

∂E

∂QI

= δE[ρ]

δρ

∂ρ

∂ρI

dρI

dQI

. (B2)

Here,

∂E

∂NR

=
∫

MT

δE[ρ]

δρ

∂ρ

∂NR

d�r; (B3)

∂ρ

∂NR,lm,l′m′
= ψ∗

R,lmψR,l′m′ ; (B4)

dNR

dMR

= 6MR(1 − MR); (B5)

∂ρ

∂ρI

= 1; (B6)

dρI

dQI

= 6QI (1 − QI )/dV ; (B7)

δE[ρ]

δρ
= VKEDF + VH + VXC + V LPS

i-e , (B8)

where VKE, VH, VXC, and V LPS
i-e are the KE potential, Hartree

potential, exchange-correlation energy potential, and local
pseudopotential, respectively. dNtotal

dY
= dNtotal

dX
dX
dY

and dENL

dY
=

dENL

dX
dX
dY

, where X = {NR},ρI , can be calculated by using

Eqs. (B5) and (B7). During the total energy minimization, we
update the chemical potential in Eq. (27) in each iteration by

μ =
〈
dE
dY

∣∣Y 〉
〈
dNtotal

dY

∣∣Y 〉 . (B9)

In each minimization step, we note the total electron number
is not strictly conserved after the line search. Therefore, we
renormalize the total number of electrons

Y = Y0 − (Ntotal[Y0] − N0)
dNtotal

dY〈
dNtotal

dY

∣∣ dNtotal
dY

〉 ,
where Y0 is the variable obtained directly by the line search
and the corrected Y serves as the initial variable for the next
optimization iteration. This correction step does not change
the decrease of the total energy obtained in the line search
procedure. As the optimization converges, this correction
becomes smaller and smaller.

APPENDIX C: DOWNSAMPLING TECHNIQUE

We illustrate the principle using a one-dimensional function
as an example. We want to accurately calculate the integral∫ B

A
f (x)g(x)dx on a coarse grid, where f (x) is a rapidly

fluctuating function while g(x) varies slowly over all space
[see Fig. 5(b)]. We apply the relationship

f̃ (xI ) = 0.5 ∗
[
f (x2I ) + f (x2I−1) + f (x2I+1)

2

]
(C1)

between the function on the dense (2I ) and coarse (I ) grids.
The numerical integration on the coarse grid can then be
written as

∫ B

A

f (x)g(x)dx ≈ 	x
∑

I

g(xI ) ∗ f̃ (xI ) = 	x̂
∑

I

[
f (x̂2I ) + f (x̂2I−1) + f (x̂2I+1)

2

]
∗ g(xI )

= 	x̂
∑

I

[
f (x̂2I ) + f (x̂2I−1) + f (x̂2I+1)

2

]
∗ g(x̂2I )

= 	x̂
∑

I

f (x̂2I )g(x̂2I ) + f (x̂2I−1)
g(x̂2I−2) + g(x̂2I )

2
+ f (x̂2I+1)

g(x̂2I ) + g(x̂2I+2)

2

= 	x̂
∑

I

[f (x̂2I−1)ḡ(x̂2I−1) + f (x̂2I )ḡ(x̂2I ) + f (x̂2I+1)ḡ(x̂2I+1)], (C2)

where x̂2I = xI and 	x̂ = 0.5	x. Since g(x) only varies
slowly, ḡ(x) can be given in good accuracy by a simple
interpolation. From the above derivation, we can obtain the
high accuracy of the integral performed on a coarse grid,

comparable to the direct integration on the two times denser
grid. This provides an efficient way for us to obtain accurate
potential matrix elements dE

dN
inside the MT spheres with a

reasonable grid size.
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