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Orbital-free (OF) density functional theory (DFT) directly solves for the electron density rather than the
wave function of many electron systems, greatly simplifying and enabling large scale first principles
simulations. However, the required approximate noninteracting kinetic energy density functionals and local
electron-ion pseudopotentials severely restrict the general applicability of conventional OFDFT. Here, we
present a new generation of OFDFT called angular-momentum-dependent (AMD)-OFDFT to harness the
accuracy of Kohn-Sham DFT and the simplicity of OFDFT. The angular momenta of electrons are
explicitly introduced within atom-centered spheres so that the important ionic core region can be accurately
described. In addition to conventional OF total energy functionals, we introduce a crucial nonlocal energy
term with a set of AMD energies to correct errors due to the kinetic energy density functional and the local
pseudopotential. We find that our AMD-OFDFT formalism offers substantial improvements over conven-

'Department of Mechanical and Aerospace Engineering, Program in Applied and Computational Mathematics,
and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544,

USA

tional OFDFT, as we show for various properties of the transition metal titanium.
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Inrecent years, orbital-free (OF) density functional theory
(DFT) [1,2] has attracted increasing interest due to its huge
advantage in numerical simplicity and efficiency: it scales
linearly with system size and thus allows large scale first
principles simulations not feasible today using orbital-based
approaches such as Kohn-Sham (KS) DFT [3]. For example,
researchers have reported OFDFT benchmark calculations
of over one million atoms [4], simulated the plastic defor-
mation of Al nanowires [5], liquid Li and Na surface struc-
tures [6], metal grain boundaries [7], multiscale simulations
of nanoindentation [8], etc. However, the lack of orbitals
requires the use of approximate noninteracting kinetic en-
ergy density functionals (KEDFs) and local pseudopotentials
(LPSs) for representing ionic cores, often resulting in large
errors compared to KSDFT. Despite great efforts in past
decades to advance OFDFT via modern KEDFs [9,10]
and bulk-derived local pseudopotentials (BLPS) [11], con-
ventional OFDFT still suffers from large quantitative (or
even qualitative) errors for a wide range of important mate-
rials, e.g., those containing transition metals. A substantial
improvement in the accuracy and general applicability of
OFDFT is therefore required to establish OFDFT as a widely
adopted theory for large scale material science simulations.

Conventional OFDFT faces three major problems, which
are especially severe for describing systems with localized
electrons, such as transition metals. (i) Using the total
electron density as the sole working variable provides no
way to distinguish electrons with different angular mo-
menta. Consequently, critically important nonlocal contri-
butions to the exact kinetic energy (KE) and the ion-electron
interaction are neglected, especially in the core region.
By contrast, KSDFT includes the angular-momentum-
dependent (AMD) centrifugal potential in the KE operator

0031-9007/13/111(6)/066402(5)

066402-1

PACS numbers: 71.15.Mb, 71.20.Be

and nonlocal AMD pseudopotentials (NLPS) [12] for high
accuracy and transferability. (ii) Current KEDFs [9,10]
contain highly nonlinear terms: the Thomas-Fermi KEDF
[13] TTF o« [ p>/3dF and the von Weizicker KEDF [14]
YV o« [|Vpl|?/pdF. While the exact KE depends linearly
on the occupation of each angular momentum channel, the
use of nonlinear KEDFs induces unphysical interactions
between electrons of different angular momenta, resulting
in errors in evaluating the KE and its potential. (iii)) Modern
KEDFs [9,10] reproduce the Lindhard response function
in the limit of a uniform electron gas subject to small
perturbations and thus are accurate mostly for nearly free-
electron-like systems (e.g., simple main group metals).
When applied to localized electrons (such as d electrons
in transition metals), conventional OFDFT produces
large errors or even qualitatively wrong behavior in the
electron density and the linear response function (related
to 8’TXEPF[p]/(6p)* [2]), yielding wrong properties.
Removing these deficiencies requires knowledge about
electron angular momenta, representing a long-standing
challenge for developing a general and accurate OFDFT.
In this Letter, we report a general AMD-OFDFT formalism,
a new generation of OFDFT, to resolve its most difficult
issues. The new formalism finally allows OFDFT to accu-
rately describe a variety of properties of transition metals
featuring partially filled and highly localized d-shells.

The above deficiencies (i)—(iii) of conventional OFDFT
are most dire close to the ionic cores: the nonlocal parts
of pseudopotentials [12] are nonzero only within a small
region around each core, and rapid electron density varia-
tions around the cores are problematic for modern KEDFs
[9,10] developed for a slowly varying density found
between the cores. We therefore use a muffin tin (MT)
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geometry in AMD-OFDFT to divide space into two
regions: an interstitial region where conventional OFDFT
is applied, and atom-centered spheres where the angular
momenta of electrons are explicitly taken into account. We
then introduce a nonlocal energy term to effectively correct
errors due to the approximate KEDF and LPS to correctly
model the AMD physics in the important core region.

Using the MT geometry, we apply different strategies in
different regions (see Fig. 1 and the Supplemental Material
[15]): inside the MT spheres, the electron density is
expanded in KS-derived atom-centered basis functions
iy r combined with an on-site density matrix Np, and out-
side by an interstitial density p;,i.e., p=p;+ > gNryp ¥ r.
In this way, we can account for the important AMD effects
of the KE operator and NLPS on the shape of p through ¢/,
providing an important basis to accurately describe the core
region that cannot be achieved by conventional OFDFT.
The OF total energy functional now becomes E°F[p(7)] =
EOF[{Ng}, p;(#)]. The use of Ng provides the angular mo-
mentum dependence inside the spheres where the AMD
physics is most important. This hybrid scheme allows for
explicitly including AMD energy terms that are not feasible
in conventional OFDFT.

We consider a general E°F as

EOF[{NR}y Pl] = T§EDF[P] + EXC[p] + EH[P]
+ EXlp] + EN[{NgL o] (D)

where TXEPF| By, Ey, and E'°Y are the noninteracting
KE, exchange-correlation, Hartree, and LPS energies,
respectively. The nonlocal energy ENU corrects the errors
due to TXEPF and includes AMD physics beyond E!°°3.
A physically sensible formulation of EN is key for correct
electron occupations and improved properties. Ideally, EN-
should contain all the differences between KS and the

conventional OFDFT total energy

ENE = ENEPS 4 T — TXEDE, 2
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FIG. 1 (color online). (a) The muffin tin geometry partitions
space into spheres centered at nuclei (sphere radius W) and an
interstitial region. (b) Basis functions are truncated outside the MT
spheres. (c) The total density is the sum of the interstitial density
Pr and the MT density PR- pR:Zlm,l/m/NR,lm,l’m’ ‘!’R,lm ‘!’R,l/m”
where [ and m are the angular momentum and magnetic quantum
numbers.

where ENUPS s the nonlocal part of the pseudopotential
energy and 7, is the exact noninteracting electron
kinetic energy. We choose the MT sphere radius large
enough (beyond the cutoff radii of NLPSs) so that the
only EN correction remaining in the interstitial region is
[T, — TXEPF], We find that completely neglecting
T, — TXEPF results in unphysical occupations inside the
spheres because of errors in the KEDFs. Thus, T, — TXEPF
must be properly treated. As demonstrated by their success
in simple metals, modern KEDFs [9,10] accurately
describe slowly varying electron densities. As densities
should be mostly slowly varying in interstitial regions,
we can safely neglect 7, — TXEPF in the interstitial region.
To ensure continuity of the KE density, we use a function to
scale down the energy density of T, — TXEPF (o zero at the
sphere boundary, resulting in a rigorous hybrid KE model
in which a part of the KEDF is replaced with 7, within the
MT spheres (see Eq. (5) in the Supplemental Material
[15]). We can then derive a general form of EN for the
MT region.

As mentioned earlier, both T, and EN-PS in Eq. (2)
depend linearly on the AM channel occupations while
available model KEDFs do not. To correctly remove
deficiencies of model KEDFs, i.e., unphysical implicit
interactions between AM channels and errors due to use
of the Lindhard response function (since the exact response
function is unknown in general form), we subtract the
linear and major nonlinear contributions of the model
KEDF within the MT spheres as we evaluate Eq. (2).
A rigorous derivation based on a Taylor expansion then
yields (see the Supplemental Material [15])

ENY{Ng} = ZEﬁgN}gtf‘l — ZVzle(N%f‘f‘l)m
R,/ R,

= > UkA,w ANZAND

R,Lmm'

! "
— > KiApuww ANEANETANEY (3)
R.Lmm'm"

where the total occupation N}gftlal = e —1INR i im>
AN}" = Ng jyy1m — Ny,;» the average occupation Ny, =
N}g’fjﬂ /(21 + 1), and A and A are constants determined by
integrals over the spherical harmonics (see the Supplemental
Material [15]). Note that Eq. (3) only considers diagonal
elements of Ny because of the small hybridization of [
channels in the core region. Although Eq. (3) is derived in
the Supplemental Material [15] based on transition metals,
in which the d channel dominates the ionic core region, it
can easily be generalized to systems with s or p channels
dominating the core region by replacing the d with s or p in
the derivation.

EL, VEh, Uk, and K are on-site AMD energies obtained
with the help of the basis functions (Fig. 1) by integrating
over the MT spheres. Thus, the problem is reduced to
finding a small set of optimal AMD energies that improve
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system properties. V%, Uk, and K% are only considered for
channels featuring localized electrons, such as the d chan-
nel in transition metals, because of their dominant contri-
bution inside the core region. The first (linear) term of
Eq. (3) includes ENPS| T, and the linear component
of —TXEDF [15] inside the MT spheres. The form of N°/3
for the V% term represents the leading nonlinear term in
—TKEDF ‘je, TIF ¢ [ p3/3d7 [10,15]. E} and V} are very
important for the absolute value of the total energy. They
also correct the relative energies between / channels inside
the MT spheres as well as between electrons inside the
spheres and in the interstitial region, and are thus crucial to
give the correct total occupations in each / channel inside
the MT spheres. The third and fourth terms containing U%
and K% correct the delocalization error arising from intra-
channel interaction errors in model KEDFs due to use of
the total density as the sole variable [15,16]. These terms,
especially the third term containing Uk, thus correctly
distribute the electrons within each subchannel m=
—1 ...,1. The form of the third term looks similar to the
KSDFT + U formalism [17] but accounts for different
physics for the localized electrons (i.e., an improved
description of the kinetic energy rather than the exchange
energy). Despite their obvious physical importance,
explicit derivation of E%, Vk, Uk, and K% is challenging.
For now, we instead determine them by comparing to a
small number of target KSDFT results. We emphasize here
that only a physically sensible formulation of EN- would
allow such a procedure to also yield reasonable physical
properties beyond the initial benchmark values. We there-
fore test a set of AMD energies for transferability against a
group of additional properties, including defect structures
such as vacancies and surfaces.

The AMD energies depend only weakly on the small
occupations of the delocalized channels (such as the s and
p channels in transition metals), which are sensitive to
system changes (see Eqgs. (17)-(20), (23), and (25) of the
Supplemental Material [15]). While they do depend on the
occupation of the localized channel (such as the d channel
in transition metals), this occupation is rarely influenced
by system changes. Therefore, the AMD energies will, to
a good approximation, be constant for a given element,
providing a strong basis for good transferability, as con-
firmed by our results below. Future work considering the
explicit dependence of the AMD energies on the occupa-
tions will further enhance their transferability. The general-
ity of our AMD-OFDFT method is not only determined
by the AMD energies but also by the transferability of the
KEDF model and of the fixed basis functions ¢ . Modern
KEDFs [9,10] as applied to simple metals should be accu-
rate enough to at least describe the interstitial region in
different structures of any metal, and perhaps for other
materials as well. We derive i from KSDFT NLPS
calculations of a suitable target system to explicitly con-
sider the effect of the surrounding electronic structure [16].

The i obtained in this way exhibit good transferability
thus far, as shown below. After obtaining the AMD ener-
gies in EN for each MT sphere, we variationally minimize
EOF[{Ng}, p;]to obtain the ground state [{Ng}, p;]. We use
Lagrange multipliers to constrain the total electron number
[16] and ensure the Pauli exclusion principle is satisfied
for [{Ng}, p;]1 by McWeeny purification [16,18]. The force
on each ion can be derived as the standard Hellmann-
Feynman force plus a Pulay force correction [16], which
arises from the atom-centered basis functions.

As a proof of principle, here we apply the outlined
AMD-OFDFT formalism to titanium, a representative tran-
sition metal of great importance in industrial applications
[19]. Our benchmark KSDFT calculations are carried out
in the ABINIT software package [20]. We use the WGC99
KEDF [10] in all OFDFT calculations. For further techni-
cal details, please refer to the Supplemental Material [15].
As a first step, we use an adaptive grid search method [16]

to determine the AMD energies Ey *” and V¢ [21] by
considering a small set of properties. We fit to the KS
occupation numbers le“ for each channel, the fcc equilib-
rium volume V£ and bulk modulus B*, the phase order-
ing energy AEj.,, between fcc and hep, and the absolute
value of the fcc total energy (underlined values in Table I).
Using only E% and V¢ in the nonlocal energy term, we can
reproduce most KS-NLPS benchmark properties (under-
lined in AMD-OF1 row in Table I), providing an important
validation for the AMD-OFDFT formalism. To quantita-
tively reproduce also the very sensitive phase ordering
energy between fcc and hep (see the row labeled AMD-
OF2 in Table I) requires corrections to the delocalization

TABLE 1. Titanium equilibrium volumes (V) in bohr?, bulk
moduli (By) in GPa, and equilibrium energies (E,) in eV for hcp,
fcc, bee, and sc bulk phases at different levels of theory. AMD-
OF1 uses only the first two terms in Eq. (3), while AMD-OF2
applies the entire Eq. (3). The underlined properties are used in
the fitting procedure.

hcp fcc bee sc
Vo 116.8 116.7 116.8 126.4
KS-NLPS By 133 131 129 88
Ey, —268.410 +0.056 +0.121 +1.042
Vo 113.6 113.1 114.2 134.8
KS-BLPS By 118 115 101 83
E, —281.529 +0.004 +0.020 +0.752
Vo 96.5 97.1 97.2 111.6
OF-BLPS By 302 316 286 195
E, —279.672 +0.133 +0.088 +0.810
Vo 115.7 115.7 1144 141.2
AMD-OF1 B, 120.8 128.7 131.9 67.6
E, —268.364 —=0.012 +0.035 +0.975
Vo 115.2 115.2 1144 131.7
AMD-OF2 B, 121.1 126.8 1324 86.6
E, —268.451 +0.047 +0.114 +0.693
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FIG. 2 (color online). The elastic constants of hcp titanium
with different theories and experimental measurements [24].

errors in the KEDF, through the higher-order terms pro-
portional to U$ and K4. The large values of U$ and K%
underline their physical importance [21]. Note that U¢ and
K¢ do not change the total occupations N, but only redis-
tribute the contribution within the different m components
of d, since they account for the intrachannel interactions in
the d channel.

To provide a first stringent test of the AMD-OFDFT
formalism, we check the transferability of the chosen
AMD energies with other properties not included in the
fitting procedure: bulk properties of titanium hcp, bee, and
sc phases, as well as their phase ordering (Table I), and the
c¢/a ratio in hep [22]. AMD-OF2, which fully evaluates
Eq. (3), produces very good agreement with KS-NLPS
benchmarks for all properties investigated. To assess the
accuracy gained by including AMD contributions, we also
compare our results to KS-BLPS and conventional OF-
BLPS theories, which use the same BLPS: the former
(using the exact KE operator) accurately includes AMD
effects in the kinetic energy, only neglecting the AMD
contributions of the ionic cores, while conventional OF-
BLPS lacks AMD contributions entirely. KS-BLPS can
produce fair V,, and B values for all structures and quali-
tatively correct energy orderings between different phases.
However, phase ordering energies given by KS-BLPS are
too small compared to KS-NLPS benchmarks. The con-
ventional OF-BLPS calculations produce very large errors
for all properties and phases calculated: errors in V, and By,
are as large as —20%/ + 200% compared to KS-NLPS. In
addition, OF-BLPS predicts a qualitatively wrong ordering
between fcc and bee phases. By comparing to KS-BLPS
results, we can attribute the large errors in OF-BLPS to the
approximate KEDF. Without properly taking into account
the important AMD component of the kinetic energy, the
KEDF poorly describes the electron density and response
to structural changes in transition metals containing local-
ized d electrons. The inclusion of angular momentum
dependence significantly improves the accuracy of
OFDFT, to the point where AMD-OFDFT is more accurate
than the much more expensive KS-BLPS calculations. The
nonlocal energy EN provides an effective way to correct

TABLE II. Ti hep(0001), fcc(100), and bee(100) surface en-
ergies: respectively, Ere?, E%¢, and E** (mJ/m?) and bulk hep Ti
monovacancy formation energy E.; (eV) for different levels of

theory. Atomic positions are not relaxed [23].

KS-NLPS KS-BLPS OF-BLPS AMD-OF1 AMD-OF2

EMP 2483 1795 5184 2145 2063
Ef 2095 1655 5581 2539 2026
Ebc 1949 1734 6636 2692 1996
Es 273 2.12 4.49 3.04 3.06

for the kinetic energy errors. Thus, we have demonstrated
that, in addition to the inclusion of NLPS effects, AMD-
OFDFT can also successfully correct errors due to the
approximate KEDF inside the MT spheres.

Accurately reproducing elastic moduli is an essential
foundation toward simulating mechanical properties of
materials. Thus, as another transferability test of the
AMD energies, we calculate the elastic constants for the
titanium hcp ground state structure (Fig. 2). It is clear that
AMD-OFDFT greatly improves the agreement with the
KS-NLPS results compared to conventional OF-BLPS the-
ory. AMD-OFDFT produces deviations of about 10% for
most C;; compared to KS-NLPS.

To further assess the transferability of the AMD energies
that were determined using only properties of the bulk fcc
phase of Ti (underlined values in Table I), we next consider
predicting properties of defect structures with precisely the
same AMD-OFDFT model as before. We evaluate Ti hcp
(0001), fce(100), and bee(100) surface formation energies
E and the monovacancy formation energy E.; for the Ti
hcp structure (see Table II). AMD-OFDFT predictions
agree more closely with KS-NLPS theory than even KS-
BLPS theory, while conventional OF-BLPS theory pro-
duces very large errors. All the above tests, including
properties of bulk phases with coordination numbers
changing from 12 to 6, five different types of deformations
for obtaining elastic constants, and surface and vacancy
formation energies, confirm the transferability of the
AMD-OFDFT method.

In conclusion, we have presented and validated a novel
AMD-OFDFT formalism that treats electrons of different
angular momenta differently near ion cores, thereby
endowing OFDFT with much greater flexibility and accu-
racy. The AMD effects of the KE operator and of the ion-
electron interaction normally left out of OFDFT are treated
here by using KSDFT-derived basis functions inside MT
spheres and by introducing a crucial nonlocal energy term
to effectively correct the errors in model KEDFs and LPSs.
Our results for various properties of Ti show that including
angular momentum dependence is essential for correct
electronic structure and properties: its inclusion dramati-
cally improves the accuracy of OFDFT. For a variety of
properties we investigated, our AMD-OFDFT results agree
better with KS-NLPS benchmarks than a much more
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expensive KS LPS approach, even for vacancy and surface
formation energies, as well as elastic constants. More
sophisticated KEDFs, or a more elaborate ansatz for ENV,
should further improve the accuracy and transferability of
AMD-OFDFT.
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