
Computer Physics Communications 185 (2014) 3175–3188
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Shared-memory parallelization of a local correlation multi-reference
CI program

Johannes M. Dieterich a, David B. Krisiloff b, Alexander Gaenko c,d, Florian Libisch a,
Theresa L. Windus c,d, Mark S. Gordon c,d, Emily A. Carter a,e,∗
a Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544-5263, USA
b Department of Chemistry, Princeton University, Princeton, NJ, 08544-1009, USA
c Department of Chemistry, Iowa State University, Ames, IA 50011, USA
d Ames Laboratory, Ames, IA 50011, USA
e Program in Applied and Computational Mathematics, and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ,
08544-5263, USA

a r t i c l e i n f o

Article history:
Received 1 June 2014
Accepted 19 August 2014
Available online 27 August 2014

Keywords:
Local correlation
Parallelization
Shared memory
Multi reference
Dioxirane
Multi-reference configuration interaction

a b s t r a c t

Wepresent a shared-memory parallelization of our open-source, local correlationmulti-reference frame-
work, TigerCI. Benchmarks of the total parallel speedup show a reasonable scaling for typical modern
computing system setups. The efficient use of available computing resources will extend simulations on
this high level of theory into a new size regime. We demonstrate our framework using local-correlation
multireference computations of alkyl-substituted dioxirane and solvated methyl nitrene as examples.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Moore’s law [1], promising an exponential growth of transistor
counts, has been the metronome of the chip industry for the last
five decades.1 While higher transistor counts for a long time di-
rectly increased single thread performance, in the last decade the
additional transistors were used to herald the advent of multi-core
processors and processing. This development bridged the gap be-
tween single-core and massively parallel systems, effectively ren-
dering single-core computing obsolete.

Computational chemistry as a high performance computing
(HPC) discipline transforms computational resources into the sci-
ence of increasingly complex and larger chemical systems and re-
actions. Within computational chemistry, one can observe wide
usage of correlated wavefunction methods due to their high

∗ Corresponding author at: Department of Mechanical and Aerospace Engineer-
ing, Princeton University, Princeton, NJ, 08544-5263, USA. Tel.: +1 609 258 5391;
fax: +1 609 258 5877.

E-mail address: eac@princeton.edu (E.A. Carter).
1 Interestingly, Gordon Moore himself had a background in Chemistry, not

Engineering.

http://dx.doi.org/10.1016/j.cpc.2014.08.016
0010-4655/© 2014 Elsevier B.V. All rights reserved.
accuracy. As the systems that are studied become more com-
plex, frequently their multiconfigurational character becomes
more dominant, ergo a need for efficient multireference corre-
lated wavefunction methods arises. Efficient formulations and
implementations of multireference coupled cluster (CC) and con-
figuration interaction (CI) methods exist [2–5]. However, these
(semi)canonical implementations share a prohibitively high scal-
ing with the molecular size. Even the most efficient parallelization
is unsuitable to overcome such intrinsic algorithmic bottlenecks.

A standard tool in single-reference correlated wavefunction
methods has been to exploit the local nature of electron cor-
relation to achieve reduced scaling compared to the canonical
equivalent [6–11]. Recently, efficiently parallelized from-scratch
implementations of local single-reference methods have been re-
ported [12]. No parallel implementation of reduced scaling mul-
tireference correlated wavefunction codes exists to date.

In this contribution, we report the implementation of a shared-
memory parallelization for our reduced scaling code, TigerCI
[13–20], implementing a Cholesky-decomposed multi-reference
local correlation algorithm. This will enable TigerCI to exploit
modern shared-memory hardware. The algorithmic protocol of
TigerCI has been reviewed at length in Ref. [20]; we therefore only

http://dx.doi.org/10.1016/j.cpc.2014.08.016
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2014.08.016&domain=pdf
mailto:eac@princeton.edu
http://dx.doi.org/10.1016/j.cpc.2014.08.016


3176 J.M. Dieterich et al. / Computer Physics Communications 185 (2014) 3175–3188
concisely summarize background theory and implementation in
this contribution where needed.

We motivate which parallelization framework was used in this
work, explain the development principles followed in parallelizing
sections of the code and assessing both the parallel speedup of
those individual sections and the overall code. On a side note, we
wish to elucidate some programming practices which facilitate
maintaining and enhancing existing Fortran code bases.

As an outlook, we discuss how exploiting available com-
puting resources in conjunction with a local correlation multi-
reference wavefunction framework allows routine simulation of
large systems at this high level of theory and present local-
correlationmultireference computations of alkyl-substituteddioxi-
rane and solvated methyl nitrene as examples.

2. Methodology

We describe herein the parallelization of our existing TigerCI
[13–15,17–21]Multi-Reference Singles and Doubles Configuration
Interaction (MRSDCI)/Averaged Coupled Pair Functional (MRACPF)
implementation. The challenges encountered and subsequent
strategies developed in this task are not unique. Indeed, we
believe they apply to many legacy code bases in the field of
computational chemistry. Due to the complexity of the existing
code, invasive changes and/or rewrites typically have to be kept
to a minimum. Additionally, the serial code paths are typically
well-tested, mature, and in production. Therefore, new features
such as parallelization should be made to integrate well with and
reuse if possible the existing code paths. Finally, efforts towards
parallelization have to be balanced with code maintenance
and optimization. In particular, the constant shift in hardware
capabilities and bottlenecks requires updates in the details of
the implementation. Consequently, having a robust parallelization
framework that avoids code duplication is essential.

Many frameworks exist to parallelize program code execu-
tion. For HPC applications, the most commonly used ones are
OpenMP [22], MPI [23], GDDI [24], and global arrays [25]. Numer-
ous additional layers abstracting or wrapping these frameworks
exist, perhapsmost notablyMPIwrappers for other languages than
C and Fortran (e.g., Refs. [26,27]). In the case of TigerCI, more than
90% of the code base is Fortran 95. The only other relevant code
part is written in C++, simplifying the choices to the OpenMP, MPI,
GDDI, and global arrays ones.

When selecting one of those frameworks, the central question
is which one can satisfy the expected application scalability
while minimizing overhead for the application in question.
Overhead can mean both development overhead and overhead at
runtime. Runtime parallel overhead involves a constant (related
to the number of processors) contribution due to the additional
complexity of a parallel code path, as well as communications
overhead that will (possibly super-linearly) increase with the
number of cores and/or the problem size. For massively-parallel
applications assumed to scale well up to hundreds or thousands of
CPUs, both the programming overhead and the constant overhead,
i.e, the question ofwhether the parallel algorithm is slower in serial
mode than the best serial algorithm are of little concern.MPI caters
to the needs of such codes. On the other hand, for tasks assumed
to scale only up to a small number of CPUs, overhead in all its
forms is a much more pressing problem. Added runtime overhead
will likely annihilate part of the parallelization benefits while
a significant programming overhead may render parallelization
economically unfeasible. This is evenmore true if the application is
not (entirely) CPU-bound but memory- or storage-bound. Optimal
usage of these resources must then be ensured.

OpenMP is an advanced programming interface (API) specifi-
cation for parallel programming which can be used for codes that
would scale poorly with many cores due to communications over-
head. Its low programming overhead stems from the high abstrac-
tion it provides (no explicit thread handling is needed) and the
elegant, directive/pragma-based API. Each parallel region is en-
closed with preprocessor instructions for an OpenMP-enabled
compiler. Ideally, this allows one to add parallelization to exist-
ing code with little programming overhead and maximum reuse
of existing, efficient serial code paths.

We expect the scalability of the TigerCI application to be mod-
est. Although classic publications indicate the possibility of imple-
menting non-local CI algorithms in amassively parallel fashion [4],
one should keep in mind that computing hardware has signifi-
cantly evolved in the last two decades, giving rise not only to ex-
ponentially more powerful cores but also putting evenmore stress
on serial bottlenecks such as communication and I/O. Additionally,
the TigerCI code has, unlike the code described in Ref. [4], not been
designed with parallel scalability in mind but instead for maximal
serial throughput: the reduction of floating point operations was
the prime target in the design of the symmetric group graphical
approach (SGGA) engine [28–32] that is at the heart of the TigerCI
code.

For the reasons discussed above, this parallelization work will
be based on the OpenMP API. The natural way to use OpenMP is
for a loop-based parallelization, i.e., evaluating the loop body con-
currently for different loop indices. The success of this strategy de-
pends on two factors: how decoupled the loop body is in between
different indices and how much computational workload exists
within the loop body compared to outside of it. Therefore, it is of
utmost importance to identify those parts of the algorithm that sat-
isfy these requirements. Naturally, this can be accomplished with
a hotspot analysis as reported in Ref. [20]. According to the Pareto
principle as conceived by Juran [33], in any system there are a vi-
tal few and trivial many. This observation is commonly applied to
computer codes because only a fraction of the code (typically 20%)
is responsible for the vastmajority of the computing time (typically
80%). Hence, another common name of the Pareto principle is the
80–20 rule. Therefore, parallelization of said fraction will suffice to
obtain some parallel speedup. Amdahl’s law [34] can be used as an
approximation for the ideal parallel speedup. In our case, we aim
to parallelize in excess of 90% of the typical wall time. This par-
allelized fraction would, following Amdahl’s law, ideally cause an
asymptotic speedup of 10. As this approximation does not take into
account serialization points within those parallelized kernels, we
expect a smaller speedup in practice.

Following the identification of the relevant kernels/loops to
be parallelized, some preparation of said kernel is typically re-
quired. This preparation includes loop reordering in order to
maximize the weight of the loop body while keeping individual
bodies decoupled. However, in the context of legacy codes, the
most important step in decoupling loop iterations is the removal of
shared global states. Unfortunately, most legacy Fortran codes use
global states either in the form of common blocks or global mod-
ule variables for information persistence and/or communication.
Obviously, if this strategy is used within the target kernels, par-
allelization will be cumbersome to impossible. Therefore, trans-
formation of global states into a functional programming style,
i.e., mutable states in subroutine parameters, is mandatory.

The remaining challenge is locking, which sanitizes the con-
current manipulation of shared data from different threads. In the
context of our local CI code, locking is most important for the
sigma vector (product of theHamiltonian and the CIwavefunction)
[28–31]. Different locking strategies are possible with OpenMP.
The most basic strategy is to use the omp critical construct,
which in this example would synchronize the entire sigma vec-
tor. This is obviously a rather inefficient technique, given the typi-
cal size of said vector of several million elements. The odds of two



J.M. Dieterich et al. / Computer Physics Communications 185 (2014) 3175–3188 3177
threads to hit the exact same element at the same time therefore
seem rather slim. More fine-grained locking is possible using the
omp atomic clause, which locks only a single memory address.
Such fine-grained locking comes at the price of a high overhead of
locks being manipulated for nothing. In our micro tests we found
another locking strategy to be vastly superior: locking by blocks. To
accomplish this, the vector is logically divided into different blocks
of identical size, each with its own lock. Assessing the impact of
different locking stride sizeswill be one of the targets of the bench-
marks presented in the results section.

Another important bottleneck to deal with besides locking is
I/O, which is often forced to be a serial process. As the SGGA is
formulated not in terms of the MO-transformed Cholesky vectors
but the reassembled integrals, we already established in Ref. [20]
the importance of an efficient buffering strategy even for the serial
case. Although modern file systems buffer frequently accessed
data in memory, a specialized buffering was found to be vastly
superior. Our buffering strategy can be summarized as follows:
instead of creating a normal Fortran random access file on disk, we
interface with an I/O buffer library [20] that handles all required
storage. We initialize a memory pool, providing used chunk size
and a maximum amount of main memory to be used. A chunk of
consecutive data typically contains hundreds of individual integral
matrix elements. Upon opening a specific file, it is associated with
a memory pool. Any subsequent read and write operations on that
file are translated into an access of the appropriatememory chunk.
The library API is chosen such that it strongly resembles traditional
Fortran random disk file access. Storage ‘‘files’’ are identified with
integer numbers, and data items are accessed by providing an
index. Internally, the library keeps data chunks either in main
memory or (as soon as the main memory provided to the pool is
exhausted) on hard disk. Upon an access request, the appropriate
chunk is fetched from the hard disk if necessary, and can then be
processed. The typical access patternwe observe requiresmultiple
accesses to several close-lying indices, beforemoving to a different
file position. Our buffered scheme avoids multiple hard drive
accesses in such cases. Per default, we use a last-in-first-out (LIFO)
policy when deciding which chunk to free upon exhaustion of
allowedmainmemory.While a last-in-last-out (LILO) policymight
seem more appropriate, consecutive access of all vector elements
(as typical in our use case) will cause hard-drive readings for all
accesses in LILO, while the fraction of elements fitting in main
memory at the beginning of the vector will be completely buffered
using LIFO. Frequently accessed data are put into separatememory
chunks, to ensure they are always fully in memory. Different files
may be associatedwith differentmainmemory chunks and storage
policies.

Since I/O is intrinsically a serial process, care must be taken
to avoid race conditions under concurrent manipulation of the
data. Our I/O buffer library ensures this by use of proper locking
whenever a chunk needs to be fetched from disk or committed
to disk. For chunks in memory, concurrent reading operations
or concurrent writing to different indices are not problematic.
Loops are parallelized in such a way that concurrent writing to the
same index (i.e., memory location) does not occur. We therefore
do not need to safeguard against concurrent writing to the same
index. Care must only be taken to guarantee that concurrent
write accesses to different blocks that need to be fetched from
the hard disk will not result in race conditions. We can thus
guarantee very fast read/write accesses for chunks in memory,
without the (significant) performance demand of locks. To avoid
unnecessary disk I/O upon exhaustion of main memory if two
cores are working on two different positions in the file, each
core may keep one chunk in main memory. Consequently, if one
core needs to access a new part of the written data, while other
cores still work on data currently in memory, no unnecessary
disk I/O operations occur. To further reduce checking of locks, we
provide an API for directly loading (storing) an array of values
from (into) the file. In this case, the library has to correctly track
which chunks are still referenced by a thread. Several benchmark
tests of the parallel version, for different systems, load levels,
buffer sizes, and a number of cores, confirm that the parallel
I/O buffer library correctly handles concurrent access requests.
Performance benchmarking shows little dependence on chunk
size, provided chunks are not too small (below 1 kB) since the hard
disk is then accessed too often. We use 80 kB chunks. Due to the
simple interface, replacing I/O file access by buffered I/O using our
library should be straightforward for other legacy Fortran codes.
Since available main memory has increased considerably in the
past decade (although it is still more expensive than hard disk
space), legacy codes might want to take advantage of the much
faster access times of RAM as opposed to hard-drives (ratio ≈

1:106). While these can be migrated by clever usage of disk arrays
for some cases [35–38], our library allows codes with moderate
memory demands to be quickly adapted to keep all files entirely
in memory, greatly increasing performance with minimal changes
to the program. Formore demanding problems, execution time can
still be substantially improved by keeping often accessed memory
regions in main memory.

3. Results and discussion

3.1. Performance assessment

This section assesses the performance of the parallelized sub-
routines and total times. As a well-controllable benchmark set, we
use local singles and doubles configuration interaction (LSDCI) en-
ergy calculations of 1-alkynes with the full set of references (nine)
obtained from a CAS[4e,4o]SCF reference wavefunction with a cc-
pVDZ basis set. The alkynes are in their equilibrium structures,
optimized at the UFF level of theory using Atomdroid [39,40]. We
consider these to be good examples in size and difficulty for sys-
tems of current interest in, e.g., biodiesel combustion research.

All timings in these sections were obtained from averaging
three independent runs, with thread-pinning enabled (scattering
mode). Both the necessary CASSCF and Cholesky decomposition
are carried out by the MOLCAS program package (version 7.8) [41]
and are not accounted for in the total TigerCI wall times. The
computational resources used were nodes with two Intel Xeon E5-
2670 @ 2.60 GHz processors and up to 64 GB RAM. The integral
buffer was allowed to occupy atmost 20 GB of RAM. The optimized
executables were compiled with ifort/icpc version 13.0 and linked
against Intel MKL 11.0.

As discussed in the implementation details, the risk of race con-
ditions arising from different threads concurrently manipulating
the sigma vector is eliminated with a blockwise locking strategy.
Consequently, performancemight dependon the size of the blocks:
on one hand, too small blockswill increase the overhead of the par-
allel code paths as they will require more lock manipulations. On
the other hand, too large blocks will cause threads to block longer
and hence cause a reduced parallel speedup due to unnecessary
waiting cycles. We thus have to check how big both of these ef-
fects actually are, to judge whether coding an autotuning strategy
to find an optimal block sizewould be justified. To do so,we bench-
mark the parallel speedup for different block sizes (see Figs. 1–3),
and find limited impact of the locking stride size on the wall time
of the total TigerCI execution time. In general, runtime deviations
from the runtime at a stride size of 1024 elements lie within less
than 5% for 1-decyne, 1-pentadecyne, and 1-icosyne. Larger devi-
ations only occur for very small stride sizes of 16 or 32 elements
that cause a substantial locking overhead. In general, the deviation
data set is fairly rough and does not follow a clear pattern.We thus



3178 J.M. Dieterich et al. / Computer Physics Communications 185 (2014) 3175–3188
Fig. 1. Influence of the locking stride size for 1-decyne. Left panel: total wall times. Right panel: percent differences compared to the wall time obtained with a locking
stride of 1024.
Fig. 2. Influence of the locking stride size for 1-pentadecyne. Left panel: total wall times. Right panel: percent differences compared to the wall time obtained with a locking
stride of 1024.
expect a block size of 1024 elements to work sufficiently well for
the systems under study here, without causing a substantial per-
formance and/or efficiency penalty.Wenote here that in theory the
optimal stride size should scale with the system size and should be
larger in canonical (nonlocal) calculations than in local ones.
With the locking stride size set to 1024, an individual analysis
of the parallelized parts of TigerCI can be carried out. This analysis
will feature the wall time spent in each subroutine as a measure of
its relative importance and the speedup achieved through shared-
memory parallelization. Additionally, the CPU time spent in the



J.M. Dieterich et al. / Computer Physics Communications 185 (2014) 3175–3188 3179
Fig. 3. Influence of the locking stride size for 1-icosyne. Left panel: total wall times. Right panel: percent differences compared to the wall time obtained with a locking
stride of 1024.
routines is recorded and analyzed in terms of parallel overhead.
Ideally, the CPU time spent in a kernel should stay constant,
independent of the number of threads used to compute the kernel.
An increase of the CPU time with the number of threads is
indicative of parallelization-induced overhead, most notably, busy
waits on locks and redundant computations. Obviously, only the
most trivial parallel problems will exhibit an absolutely constant
CPU time with the number of threads, while most real-world
problems will show some increase. The magnitude of this increase
is a very good measure to analyze and explain the source of
suboptimal parallel speedups.

The AO to MO basis transform of the Cholesky vectors is the
first major computational workload in TigerCI. This statement
assumes that the AO Cholesky vectors were precalculated by
MOLCAS when constructing the reference wavefunction. The
transformation occurs in two steps by transforming the two AO
indices individually:

T I
aν =


µ

LIµνCµa, (1)

T I
ab =


ν

T I
aνCνb, (2)

where µ and ν are AO indices, a and b are MO indices, and I
indexes the Cholesky vectors. The fully AO Cholesky vectors, LIµν ,
are transformed into the half AO, half MO order three tensor T I

aν
in the first step. In the second step, T I

aν is transformed into the full
MO Cholesky vector T I

ab. To avoid storing the entire intermediate
tensor T I

aν , Eqs. (1) and (2) are computed in batches; each batch
contains a subset of a’s. The amount of available memory controls
the size of the transformation batches. In our tests, we allow a
maximum of 10 GB to be used, allowing the transformation to be
done in a single batch using the cc-pVDZ basis set. Both steps of the
transformation are parallelized: Eq. (1) over the Cholesky index I
and Eq. (2) over the MO index a. A detailed analysis (Fig. 4) shows
a favorable strong scaling (i.e., speedup by an increase in processor
count at fixed problem size) already for the 1-decyne case with
an 8-fold speedup for 16 threads. Unsurprisingly, the weak scaling
(i.e., speedup by an increase in problem size at fixed processor
count) is also favorable in this case, as the number of orbitals in
the batch and the computational complexity of the kernel increases
from 1-decyne to 1-icosyne. It is therefore advisable to maximize
the number of orbitals treated in one transformation batch. The
CPU time overhead is small and occurs due to the I/O of reading
the AO Cholesky vectors from disk and writing the MO Cholesky
vectors to the I/O buffer.

Since the SGGA is not formulated in terms of Cholesky vectors
but in terms of actual integrals, the transformed Cholesky vectors
need to be reassembled into the two-electron integrals. As high-
lighted inRef. [20], this kernel is currently complicatedby a sphere-
based integral truncation employed by default which projects out
certain integrals considered unimportant. Additionally, in prepa-
ration for the subsequent SGGA, the integrals are computed in
classes. Each class covers one part of the total integral tensor. For
example, one integral class consists of integrals with all orbital in-
dices in the external space (ab|cd) and another one of integrals
with one index in the internal space and three indices in the ex-
ternal space, (ia|bc). Therefore, the parallelization is carried out in
two ways: (i) Integral classes covering a large part of the integral
tensors are parallelized internally over the leading orbital index.
This parallelization style is used for the three-external and four-
external integrals. (ii) The other integral classes are evaluated in
parallel, i.e., the parallelization is carried out on the integral class
level. Fig. 5 provides an overview of the resulting parallel speedup.
With amaximumspeedup ofmore than 5 for 1-icosyne in our tests,
this parallelization proves to be rather efficient given the inherent
I/O bottleneck of the kernels. Note that our parallel I/O buffer is
of crucial importance to achieve this speedup as it helps ease the
serial nature of disk-based I/O.

Almost all the remaining computing time is spent in the SGGA.
The SGGA implementation consists of thousands of lines of code
and hundreds of subroutines. As discussed previously, a hotspot



3180 J.M. Dieterich et al. / Computer Physics Communications 185 (2014) 3175–3188
Fig. 4. Wall times, parallel speedup, and CPU time overhead for the transformation of Cholesky vectors from the AO into the MO basis. Left panel: wall times, right panel:
parallel speedup and CPU overhead with solid lines used for speedup and dashed lines for overhead.
Fig. 5. Wall times, parallel speedup, and CPU time overhead for the integral reassembly from transformed Cholesky vectors. Left panel: wall times, right panel: parallel
speedup and CPU overhead with solid lines used for speedup and dashed lines for overhead.
analysis was carried out to identify the subroutines where paral-
lelization would benefit the total wall time. In the following, the
parallel speedup achieved for these subroutines will be discussed
in order of decreasing number of external orbital indices of the in-
tegrals used within the kernels. This order also corresponds (with
one exception) to a decreasing time spent within that kernel. We
refer to Ref. [20] for a detailed discussion of said analysis and the
scaling behavior of different parts of the entire LSDCI algorithm
with system size and number of references in the calculation.

Just as with the MO integral reassembly, the most expensive
subroutine within the SGGA is typically the one dealing with four-
external integral indices. This kernel is formulated vectorized [21]



J.M. Dieterich et al. / Computer Physics Communications 185 (2014) 3175–3188 3181
Fig. 6. Wall times, parallel speedup, and CPU time overhead for the four-external part of the SGGA. Left panel: wall times, right panel: parallel speedup and CPU overhead
with solid lines used for speedup and dashed lines for overhead.
and integral-driven. Hence, the parallelization is over the leading
external orbital index. This style of parallelization causes the
reading of necessary integrals to lie within the parallel region.
With our I/O buffer, such requests may be satisfied from fast main
memory and in a concurrent fashion. The parallel efficiency of this
kernel is at maximum 4.75 in our tests (see Fig. 6), with no notable
beneficial weak scaling effects when enlarging the system from 1-
decyne to 1-icosyne. The CPU time overhead is fairly limited, at a
maximum of 1.75 in our tests.

The three-external kernel of the SGGA is again formulated in
vectorized and integral-driven mode. The parallelization is over
the leading internal orbital index. Again, the reading of necessary
integrals is done within the parallel region from the I/O buffer. The
parallel speedup of at most 2.5 is less than ideal for this routine
in our tests (see Fig. 7). The CPU overhead is one of the reasons
for this behavior, with a more than 2.5-fold CPU overhead for 16
threads in the 1-pentadecyne case. Although the locking of the
sigma vector is done in an efficient way, it nevertheless penalizes
the parallel throughput. This is also visible in the erratic wall time
pattern, probably indicating blocking locks. Although this kernel
is significantly less important than the four-external one in terms
of computational cost, it nevertheless harms the total parallel
speedup. It may be possible to obtain a more lock-free situation
either through non-uniform stride sizes or reordering of the sigma
vector.

The next vectorized kernel operates on two-internal/two-ex-
ternal integrals (ij|ab). With a maximum serial wall time of 9000 s
spent in this kernel compared to 12000 s spent in the three-
external one, it is important for the overall parallel speedup. The
parallelization is carried out over the leading internal index. We
find a maximum speedup of 5 (see Fig. 8) with a beneficial weak
scaling behavior for this kernel. By contrast to the three-external
kernel, the CPU time overhead is again well-controlled at less than
1.25 in all our tests.

The three-internal subroutine is the only path-driven (not
integral-driven) SGGA kernel thatwas parallelized in thiswork. Al-
though the parallelization is formally injected over the number of
internal orbitals, this is already at an inner loop level. This paral-
lelization style causes a significant overhead in terms of CPU time
spent for the solution (see Fig. 9). Logically, the maximum parallel
efficiency is also very limited at less than two. The speedup even
peaks at four to six threads depending on system size. Notably, the
weak scaling exhibited by this kernel is actually disadvantageous.
For these reasons, we limit the maximum number of threads al-
lowed to be used in this kernel to four by default, independent of
the number of threads used for the entire programexecution. Addi-
tionally, a reformulation of this kernel into a more parallelization-
friendly structure may be necessary. Fortunately, this kernel
accounts for the smallest fraction of all kernels discussed here,
making its impact on the overall scaling less severe.

We note one additional kernel where the path-based formula-
tion is unsuitable for parallelization: the four-internal subroutine.
Parallelization efforts carried out were able to obtain a kernel only
with extremely limited scaling that even with 16 threads was sig-
nificantly slower than the optimized serial kernel. A reformulation
of such kernels in terms of a vectorized treatment may prove nec-
essary in the future for specific large systems.

Both the three-internal as well as the four-internal kernels
were found to scale sub-cubically with the system size and sub-
quadratically with the number of references [20]. Therefore, their
impact seems to be limited in the present context.

Finally, we discuss the parallelization of another vectorized ker-
nel, the purely internal two-segment loops. We parallelize over
the leading internal orbital index; as these integrals are small in
number and therefore size, they are kept in memory during pro-
gram execution. Note that the wall time spent within this kernel is
two to three times higher than for the previously discussed three-
internal kernel. The parallelization exhibits at maximum a parallel
speedup of 3.2 with a reasonable scaling of the CPU time overhead
(see Fig. 10). The weak scaling proves to be beneficial, improving
the maximal speedup from less than 2.5 for 1-decyne to 3.2 for 1-
icosyne. We can once more conclude that vectorized formulations
of the SGGA kernels lend themselves well to parallelization and
cause only limited overhead as opposed to path-based kernels.



3182 J.M. Dieterich et al. / Computer Physics Communications 185 (2014) 3175–3188
Fig. 7. Wall times, parallel speedup, and CPU time overhead for the three-external part of the SGGA. Left panel: wall times, right panel: parallel speedup and CPU overhead
with solid lines used for speedup and dashed lines for overhead.
Fig. 8. Wall times, parallel speedup, and CPU time overhead for the two-internal part of the SGGA. Left panel: wall times, right panel: parallel speedup and CPU overhead
with solid lines used for speedup and dashed lines for overhead.
Moving on to the overall picture, memory scaling with the
number of threads is a very relevant yet seldom discussed feature
of parallel implementations. Especially for algorithms requiring
O(N3) memory allocations for each thread, as the one discussed
here, thememory requirementmaybecomeanobstacle for parallel
program execution. An analysis of the scaling of the maximal
resident set size (RSS) in Fig. 11 indicates that the added memory
requirement for typical calculations is not prohibitive, with a
maximum overhead of 25% for 16 threads in our setup. The
maximum resident size is the maximal memory in main memory



J.M. Dieterich et al. / Computer Physics Communications 185 (2014) 3175–3188 3183
Fig. 9. Wall times, parallel speedup, and CPU time overhead for the three-internal part of the SGGA. Left panel: wall times, right panel: parallel speedup and CPU overhead
with solid lines used for speedup and dashed lines for overhead.
Fig. 10. Wall times, parallel speedup, and CPU time overhead for the purely internal part of the SGGA. Left panel: wall times, right panel: parallel speedup and CPU overhead
with solid lines used for speedup and dashed lines for overhead.
associated with the process. After an offset phase, this overhead
scales clearly linearly with the number of threads, which is the
expected behavior.

We conclude the assessment of our parallel local CI imple-
mentation with overall scaling results. The total parallel speedup
is mediocre, with a maximal speedup of three (see Figs. 12–14).
As discussed previously, this result is due to the original SGGA
implementation being heavily I/O bound and optimized for se-
rial execution. Nevertheless, the obtained speedup is significant in
practice. No significant difference between the test systems or ben-
eficial weak scaling can be observed. The latter is in part caused
by truncations initiated by the local algorithm. The structure of the



3184 J.M. Dieterich et al. / Computer Physics Communications 185 (2014) 3175–3188
Fig. 11. Memory consumption as a function of the number of threads. Measured
quantity is maximal resident set size during program execution, i.e., the maximal
memory in main memory associated with the process. Single thread consumption
for 1-decyne is 10.5 GB, for 1-pentadecyne 19.4 GB, and for 1-icosyne 29.9 GB.

Fig. 12. Overall parallel speedup of the shared-memory parallelized TigerCI
codebase for the 1-decyne test case.

Fig. 13. Overall parallel speedup of the shared-memory parallelized TigerCI
codebase for the 1-pentadecyne test case.

vectorized/integral-driven subroutineswill causemaximal parallel
speedup if the ratio of allowed excitations per orbital to the num-
ber of orbitals is high.
Fig. 14. Overall parallel speedup of the shared-memory parallelized TigerCI
codebase for the 1-icosyne test case.

Fig. 15. General structure of dioxirane. R1 and R2 are hydrogen atoms or organic
substituents.

3.2. Applications of parallel, local MRSDCI theory

3.2.1. Localized MRSDCI Study of Alkyl(trifluoromethyl)dioxirane and
its reaction with chloride ion

Dioxiranes (see Fig. 15) are reactive, yet mild and selective ox-
idants of organic compounds. In green oxidation technologies for
water treatment, dioxirane derivatives are emerging as fast-acting,
chlorine-free, and environmentally-friendly oxidizing agents for
disinfection in aqueous media effective for destruction of vari-
ous strains of microorganisms [42]. The characteristic reactions of
dioxiranes [43] are: electrophilic transfer of an oxygen atom to nu-
cleophilic substrates (e.g., epoxidation of alkenes) (Fig. 16, reaction
(a)); insertion of an oxygen atom into C–H or Si–H sigma bonds in
alkanes and silanes (Fig. 16(b) and (c)); and oxidation of chloride
ions to hypochlorite ions (Fig. 16(d)). The reactivity and selec-
tivity of dioxiranes can be fine-tuned by choosing suitable sub-
stituents; for example, methyl(trifluoro-methyl)dioxirane (R1 =

CH3, R2 = CF3 in Fig. 15) exhibits higher reactivity than dimethyl-
dioxirane [44], while dioxiranes with a tert-butyl substituent
(R1 = (CH3)3C in Fig. 15) show higher selectivity than dimethyl-
dioxirane [45]. For industrial applications such as cleaning, dis-
infection, and decontamination, alkyl(trifluoromethyl)dioxirane
oxidants (R1 = alkyl, R2 = CF3 in Fig. 15) were suggested as safer,
more selective, and more effective alternatives to conventional
hypochlorite- and peroxide-based agents [46].

The molecular structure of dioxiranes is characterized by a
strained O–O bond having noticeable diradical character [47],
thus necessitating the use of multireference methods for com-
putational studies of these compounds. The local MRCI method
is a natural choice for the study of alkyl-substituted dioxiranes.
In this paper, the local MRSDCI (LMRSDCI) method is employed
to compute the energy of the oxidation reaction, in which n-
butyl(trifluoromethyl)dioxirane (I) oxidizes the chloride ion to
form hypochlorite ion and n-butyl(trifluoromethyl)ketone (II) as



J.M. Dieterich et al. / Computer Physics Communications 185 (2014) 3175–3188 3185
Table 1
CASSCF, LMRSDCI, and dynamic correlation energies (all in hartrees) for compound I and compound II and the reaction energies computed using Eq. (4), with the value of
(EOCl− − ECl− ) set to −75.0253790 a.u.

Compound I Compound II Reaction energy (kcal/mol)

Reference CASSCF energy −680.444201 −605.654703 −148.0
Weight of RHF reference in CASSCF 0.58 1.0
LMRSDCI energy −681.751107 −606.866757 −88.5
Weight of the reference in LMRSDCI 0.79 0.80
Dynamic correlation energy −1.306906 −1.212054
Wall-clock time (min) 40.0 5.3
Fig. 16. Characteristic reactions of dioxiranes: (a) epoxidation of alkenes;
(b) insertion of an oxygen atom into a C–H sigma bond; (c) insertion of an oxygen
atom into a Si–H sigma bond; (d) oxidation of chloride ion to the hypochlorite ion.

products (Eq. (3)).

(3)

Themolecular geometries ofn-butyl(trifluoromethyl)-dioxirane
(I) and n-butyl(trifluoromethyl) ketone (II) were optimized using
density functional theory (DFT) with the B3LYP functional [48–50]
and the 6-31G atomic basis set [51,52]; the optimization was con-
ducted using the GAMESS [53,54] quantum chemistry program.
The optimized structures are shown in Fig. 17.

Considering the bonding and anti-bonding sigma orbitals of the
O–O bond as active orbitals (see Fig. 18), a complete active space
self-consistent field (CASSCF) computation in a CAS[2e,2o] active
space was carried out using the cc-pVDZ basis set [55] to generate
the reference multiconfigurational wavefunction, followed by an
LMRSDCI calculation.

CASSCF reference energies, LMRSDCI energies, dynamic corre-
lation energies, and an estimated reaction (Eq. (3)) energy are pre-
sented in Table 1. The dynamic correlation energy is defined as the
difference between the LMRSDCI and the energies of the reference
wavefunctions. The reaction energy is estimated as the difference
between the total energies of the reactants and products, corrected
by the energy difference between chloride and hypochlorite ions:

Ereaction = EII − EI + (EOCl− − ECl−). (4)
Fig. 18. Localized active orbitals of n-butyl(trifluoromethyl)dioxirane. Carbon,
hydrogen, oxygen, and fluorine atoms are represented as gray, white, red, and green
balls respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Source: The picture is generated by Jmol [66].

Ereaction is the energy of the reaction; EI and EII are the to-
tal energies of the reactant and the product, respectively; EOCl−
and ECl− are the energies of chloride and hypochlorite ions. The
CCSD(T)/aug-cc-pVTZ energies of EOCl− = −534.830449 and ECl−
= −459.805070 ha are reported in the NIST Computational Chem-
istry Comparison and Benchmark Database (CCCBDB) [56].

The CASSCF calculation shows that compound I indeed exhibits
multireference character with a reference weight of the restricted
Hartree–Fock (RHF) determinant to be around 58%. The reaction
energy computed at the CASSCF level is−148 kcal/mol, suggesting
that the reaction is thermodynamically favorable. The LMRSDCI
method predicts the reaction energy at the correlated level to be
−88.50 kcal/mol, showing a substantial dynamic correlation effect
(59.5 kcal/mol) on the reaction energy; this is also corroborated
by a noticeable (20%) weight of out-of-reference singly and
doubly excited configurations. On the other hand, the reasonably
high weight of the reference wavefunction in the LMRSDCI
wavefunction indicates the adequacy of the chosen active space.
A short wall clock time of 40 min, using eight threads on a dual
Intel Xeon E5450 system with 16 GB RAM, for a multireference
Fig. 17. The optimized structures of n-butyl(trifluoromethyl)dioxirane (left) and n-butyl(trifluoromethyl)ketone (right). Carbon, hydrogen, oxygen, and fluorine atoms are
represented as gray, white, red, and green balls, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Source: Pictures are generated by Jmol [66].



3186 J.M. Dieterich et al. / Computer Physics Communications 185 (2014) 3175–3188
Table 2
CASSCF, LMRSDCI, and dynamic correlation energies (all in hartrees) for solvated and unsolvated methyl nitrene, and the calculated values of the singlet–triplet gap.

CASSCF energy LMRSDCI energy Dynamic correlation energy CASSCF reference weight Time (min)

Unsolvated CH3N
T0 −94.001474 −94.266483 −0.265010 0.91 0.15
S1 −93.936723 −94.208585 −0.271862 0.91 0.10
S2 −93.874506 −94.164885 −0.290379 0.90 0.25
S–T gap (kcal/mol) 40.6 36.3
(H2O)10CH3N
T0 −854.323975 −856.467726 −2.143751 0.70 5
S1 −854.259967 −856.402060 −2.142093 0.69 10
S2 −854.198945 −856.385139 −2.186194 0.69 9
S–T gap (kcal/mol) 40.2 41.2
(H2O)15CH3N
T0 −1234.502081 −1237.350888 −2.848807 0.82 18

S1 −1234.438135 −1237.312943 −2.874808 0.67 30
S2 −1234.377183 −1237.261462 −2.884279 0.67 31
S–T gap (kcal/mol) 40.1 23.8
Fig. 19. Localized active orbitals of CH3N(H2O)15 . Carbon, hydrogen, oxygen, and
nitrogen atoms are represented as gray, white, red, and blue balls respectively. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Source: The picture is generated by Jmol [66].

computation suggests that the computation of long chain alkyl
substituted dioxiranes is feasible using the LMRSDCI method.

3.2.2. LMRSDCI study of singlet–triplet splitting energy gap of
methyl nitrene, methyl nitrene–(H2O)10, andmethyl nitrene–(H2O)15
clusters

Nitrenes are reactive diradical intermediates of general formula
R–N (where R is a hydrogen atom or an organic radical) that find
uses in synthesis, polymer cross-linking, photoaffinity labeling,
and photoresist technology [57–59]. Nitrenes may exist in either
a singlet or triplet electronic state: singlet alkyl nitrenes are
formed as a result of photodecomposition of the corresponding
azines, and lower-energy triplet alkyl azines were identified both
in the gas phase and in solution. It is expected that triplet alkyl
nitrenes are longer-lived than their singlet forms and are more
easily intercepted by chemical reactions [60]. Due to their diradical
nature, computational investigations of the electronic structure
of nitrenes require the use of multireference methods [61]. As
the solvent environment can be expected to affect the electronic
properties and reactivity of nitrenes [60], it is imperative to include
solvent molecules in the computational model. In particular, the
closest solventmolecules are required to be included in the ab initio
treatment [62]. The LMRSDCI method was employed to compute
the singlet–triplet energy gap of methylnitrene CH3N and aqueous
methylnitrene clusters CH3N(H2O)10 and CH3N(H2O)15.

Themolecular geometry ofmethyl nitrene for the lowest energy
triplet state was optimized using unrestricted density functional
theory (UDFT) with the B3LYP functional [48–50] and the 6-
31G basis set [51,52] (UDFT/B3LYP/6-31G); the optimization was
conducted using theGAMESS [53,54] quantumchemistry program.

To obtain the relaxed geometry of methyl nitrene in the
presence of solvent, the quantum mechanics/effective fragment
potential (QM/EFP1) method [63] was used to solvate the methyl
nitrene. The UDFT/B3LYP/6-31G/EFP1 model containing the UDFT/
B3LYP/6-31GQMmethyl nitrene part and 50 EFP1watermolecules
was constructed. An NVT-ensemble [64] QM/EFP1/molecular dy-
namics (MD) simulation was carried out for the model for 3 pi-
coseconds using a Nosé–Hoover thermostat [64] at 300 K. Then,
the structures of methyl nitrene with 15 and 10 closest water
molecules, as well as the unsolvated methyl nitrene structure,
were cut out from an MD snapshot for the CASSCF and LMRSDCI
computations.

To generate the reference multiconfigurational wavefunction,
CASSCF computationswere carried out in a CAS[2e,2o] active space
with the cc-pVDZ basis [55]. The two electrons are distributed
in an active space consisting of 2 molecular orbitals with the
maximum contributions of px and py nitrogen orbitals (see Fig. 19).
Two state-specific CASSCF computationswere performed to obtain
two singlets (as expected, the lowest two CASSCF roots are
nearly degenerate, corresponding to one approximately doubly
degenerate singlet state S1). A state-specific CASSCF computation
was performed to obtain one triplet state. As expected, the ground
state of methyl nitrene is a triplet state T0.

For the three chosen structures of CH3N, CH3N(H2O)10, and
CH3N(H2O)15 clusters, the CASSCF reference energies, LMRSDCI
energies, dynamical correlation energies for T0, S1, and S2 states,
and the singlet–triplet energy gap (S–T gap) are presented in
Table 2. LMRSDCI predicts the S–T gap for the gas phase CH3N to
be 36.3 kcal/mol, in reasonable agreement with the experimental
value of 31.2(±0.3) kcal/mol [65]. The S–T gap increases for
the CH3N(H2O)10 cluster and then decreases for CH3N(H2O)15,
suggesting that the S–T gap of CH3N is substantially influenced by
the degree of solvation (the number and positions of surrounding
watermolecules). At the reasonably solvated level of 15waters, the
S1 state of themethyl nitrenemolecule is stabilized (relative to the
T0 state) by the surrounding water molecules.

The relative stabilization of the S1 state of the methyl nitrene
molecule immersed in a polarizable medium, such as water, is
consistent with the higher dipole moment of the singlet state



J.M. Dieterich et al. / Computer Physics Communications 185 (2014) 3175–3188 3187
(2.07 D for the singlet state vs. 1.98 D for the triplet state,
according to the CASSCF calculation). The predicted increase of
the S–T gap in the case of the CH3N(H2O)10 cluster can be
attributed to a number of factors, such as incomplete solvation,
the energetically unfavorable interaction of the methyl nitrene
molecule with permanent dipoles of water molecules, and the
absence of the polarizablemedium in clustermodels beyond the 10
or 15 surrounding water molecules. It is also reasonable to expect
that geometry relaxation or a proper configurational sampling of
the solvation shell will affect the calculated S–T gap. However, a
systematic investigation of the influence of these factors is beyond
the scope of the present work. The wall clock time of tens of
minutes, using eight threads on a dual Intel Xeon E5450 system
with 16 GB RAM, suggests that the LMRSDCImethod is a promising
approach for correlated computations with inclusion of explicit
solvent molecules.

4. Conclusions

We have shown here a first implementation of a shared-
memory local multi-reference CI extension to our TigerCI code.
The speedups achieved in the parallelized routines are mediocre
to good with the total speedup of typical benchmark calculations
to be three-fold on our 16 core benchmarking system. We are able
to attribute this unfavorable scaling to lock-contention in specific
routines and the general design of the SGGA being intrinsically
hard to efficiently parallelize. Although the parallel speedups re-
ported here are not close to linear, we believe they will in practice,
in conjunctionwith our reduced scaling CI implementation, enable
science for significantly larger systems than are currently accessi-
ble though canonical multireference codes.

Within the context of a Cholesky-decomposed, SGGA-based
local CI implementation, we expect improvements through
reformulations of the routines posing bottlenecks in terms of a
vectorized mode. Additionally, a reformulation of the numerical
kernels in terms of the MO transformed Cholesky vectors could
help to overcome the remaining I/O induced lock contention and
in general improve execution time. In the meantime, an integral-
direct implementation could be used to lift some of the restrictions
currently present in the code.

Acknowledgments

JMD acknowledges a German academic exchange service
(DAAD) fellowship. EAC thanks theUSNational Science Foundation
(Grant No. CHE-1265700) for support of this work. All calculations
presented in the performance assessment section were carried out
using Princeton’s TIGRESSHigh Performance Computing resources.

MSG, TLW and AG were supported by a grant from the US
Department of Energy, Office of Basic Energy Sciences, Division
of Chemical Sciences, Geosciences and Biosciences through the
Ames Laboratory PCTC, Chemical Physics, and Homogeneous and
Interfacial Catalysis project. The Ames Laboratory is operated for
the US Department of Energy by Iowa State University under
contract No. DE-AC02-07CH11358. The calculations presented in
the applications section were performed on a Linux cluster that
was provided by a Department of Defense DURIP grant.

References

[1] G.E. Moore, Proc. IEEE 86 (1998) 82.
[2] K.R. Shamasundar, G. Knizia, H.-J. Werner, J. Chem. Phys. 135 (2011)

054101. URL: http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/
1.3609809.

[3] J. Brabec, J. Pittner, H.J.J. van Dam, E. Aprà, K. Kowalski, J. Chem. Theory
Comput. 8 (2012) 487. http://pubs.acs.org/doi/pdf/10.1021/ct200809m, URL:
http://pubs.acs.org/doi/abs/10.1021/ct200809m.
[4] H. Dachsel, H. Lischka, R. Shepard, J. Nieplocha, R.J. Harrison, J. Comput. Chem.
18 (1997) 430.

[5] H. Lischka, T. Müller, P.G. Szalay, I. Shavitt, R.M. Pitzer, R. Shepard, Wiley
Interdiscip. Rev.: Computat. Mol. Sci. (ISSN: 17590876) 1 (2011) 191. URL:
http://doi.wiley.com/10.1002/wcms.25.

[6] P. Pulay, Chem. Phys. Lett. 100 (1983) 151.
URL: http://www.sciencedirect.com/science/article/pii/0009261483807039.

[7] S. Saebo, P. Pulay, Annu. Rev. Phys. Chem. (ISSN: 0066-426X) 44 (1993) 213.
URL: http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.44.100193.
001241.

[8] S. Saebø, P. Pulay, Chem. Phys. Lett. 113 (1985) 13.
URL: http://www.sciencedirect.com/science/article/pii/000926148585003X.

[9] M. Schutz, G. Hetzer, H.-J. Werner, J. Chem. Phys. (ISSN: 00219606) 111 (1999)
5691. URL: http://link.aip.org/link/JCPSA6/v111/i13/p5691/s1&Agg=doi.

[10] M. Schutz, H.-J. Werner, J. Chem. Phys. (ISSN: 00219606) 114 (2001) 661. URL:
http://link.aip.org/link/JCPSA6/v114/i2/p661/s1&Agg=doi.

[11] E.A. Carter, D. Walter, Encyclopedia Comput. Chem. (2004)
URL: http://onlinelibrary.wiley.com/doi/10.1002/0470845015.cu0024/full.

[12] D.G. Liakos, A. Hansen, F. Neese, J. Chem. Theory Comput. 7 (2011) 76.
http://pubs.acs.org/doi/pdf/10.1021/ct100445s,
URL: http://pubs.acs.org/doi/abs/10.1021/ct100445s.

[13] A. Venkatnathan, A.B. Szilva, D. Walter, R.J. Gdanitz, E.A. Carter, J. Chem. Phys.
(ISSN: 0021-9606) 120 (2004) 1693.
URL: http://www.ncbi.nlm.nih.gov/pubmed/15268300.

[14] D. Walter, A.B. Szilva, K. Niedfeldt, E.A. Carter, J. Chem. Phys. (ISSN: 00219606)
117 (2002) 1982.
URL: http://link.aip.org/link/JCPSA6/v117/i5/p1982/s1&Agg=doi.

[15] D. Walter, A. Venkatnathan, E.A. Carter, J. Chem. Phys. (ISSN: 00219606) 118
(2003) 8127.
URL: http://link.aip.org/link/JCPSA6/v118/i18/p8127/s1&Agg=doi.

[16] T.S. Chwee, A.B. Szilva, R. Lindh, E.A. Carter, J. Chem. Phys. (ISSN: 1089-7690)
128 (2008) 224106. URL: http://www.ncbi.nlm.nih.gov/pubmed/18554005.

[17] T.S. Chwee, E.A. Carter, J. Chem. Phys. (ISSN: 1089-7690) 132 (2010) 074104.
URL: http://www.ncbi.nlm.nih.gov/pubmed/20170212.

[18] T.S. Chwee, E.A. Carter, J. Chem. Theory Comput. (ISSN: 1549-9618) 7 (2011)
103. URL: http://pubs.acs.org/doi/abs/10.1021/ct100486q.

[19] D.B. Krisiloff, E.A. Carter, Phys. Chem. Chem. Phys. (ISSN: 1463-9084) 14 (2012)
7710. URL: http://xlink.rsc.org/?DOI=c2cp23757a. http://www.ncbi.nlm.nih.
gov/pubmed/22358179.

[20] D.B. Krisiloff, J.M. Dieterich, F. Libisch, E.A. Carter, in: R. Melnick (Ed.),
Mathematical and Computational Modeling, Wiley, 2014 (in press).

[21] D.Walter, E.A. Carter, Chem. Phys. Lett. (ISSN: 00092614) 346 (2001) 177. URL:
http://linkinghub.elsevier.com/retrieve/pii/S0009261401009666.

[22] The openmp api specification for parallel programming, http://openmp.org/
wp (2014).

[23] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete
Reference, MIT Press, Cambridge, MA, USA, 1995.

[24] D.G. Fedorov, R.M. Olson, K. Kitaura, M.S. Gordon, S. Koseki, J. Comput. Chem.
(ISSN: 1096-987X) 25 (2004) 872. URL: http://dx.doi.org/10.1002/jcc.20018.

[25] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, E. Apra, Int. J. High
Perform. Comput. Appl. 20 (2006) 203.

[26] M. Baker, M. Grove, A. Shafi, Parallel and Distributed Computing, 2006. ISPDC
’06. The Fifth International Symposium on (2006), pp. 3–10.

[27] pympi: Putting the py in mpi, http://pympi.sourceforge.net/index.html
(2014).

[28] W. Duch, J. Karwowski, Theor. Chem. Acc.: Theory, Comput. Model. (Theor.
Chim. Acta) 51 (1979) 175.
URL: http://www.springerlink.com/index/P72R78TN38X23Q72.pdf.

[29] W. Duch, J. Karwowski, Int. J. Quantum Chem. (ISSN: 0020-7608) 22 (1982)
783. URL: http://doi.wiley.com/10.1002/qua.560220411.

[30] W. Duch, J. Karwowski, Comput. Phys. Rep. (ISSN: 01677977) 2 (1985) 93. URL:
http://linkinghub.elsevier.com/retrieve/pii/0167797785900012.

[31] W. Duch, J. Karwowski, Theor. Chim. Acta (ISSN: 0040-5744) 71 (1987) 187.
URL: http://www.springerlink.com/index/10.1007/BF00526416.

[32] K. Tanaka, Y. Mochizuki, T. Ishikawa, H. Terashima, H. Tokiwa, Theor. Chem.
Acc. 117 (3) (2006) 397–405. http://dx.doi.org/10.1007/s00214-006-0171-8.

[33] J.M. Juran, Quality Control Handbook, McGraw-Hill Book Company, New York,
1951.

[34] G.M. Amdahl, AFIPS Conf. Proc. 30 (1967) 483.
[35] A. Asadchev, M.S. Gordon, J. Chem. Theory Comput. 9 (2013) 3385.

http://pubs.acs.org/doi/pdf/10.1021/ct400054m,
URL: http://pubs.acs.org/doi/abs/10.1021/ct400054m.

[36] T. Janowski, A.R. Ford, P. Pulay, J. Chem. Theory Comput. 3 (2007) 1368.
[37] T. Janowski, P. Pulay, J. Chem. Theory Comput. 4 (2008) 1585.
[38] J. Baker, T. Janowski, K. Wolinski, P. Pulay, Comput. Mol. Sci. 2 (2012) 63.
[39] A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem.

Soc. 114 (1992) 10024. http://pubs.acs.org/doi/pdf/10.1021/ja00051a040.
URL: http://pubs.acs.org/doi/abs/10.1021/ja00051a040.

[40] J. Feldt, R.A. Mata, J.M. Dieterich, J. Chem. Inf. Model. 52 (2012) 1072.
http://pubs.acs.org/doi/pdf/10.1021/ci2004219,
URL: http://pubs.acs.org/doi/abs/10.1021/ci2004219.

[41] F. Aquilante, L. DeVico, N. Ferré, G. Ghigo, P.-Å. Malmqvist, P. Neogrdy, T.B.
Pedersen, M. Pitok, M. Reiher, B.O. Roos, et al., J. Comput. Chem. (ISSN: 1096-
987X) 31 (2010) 224. URL: http://dx.doi.org/10.1002/jcc.21318.

[42] M.-K.K. Wong, T.-C.C. Chan, W.-Y.Y. Chan, W.-K.K. Chan, L.L. Vrijmoed, D.K.
O’Toole, C.-M.M. Che, Environ. Sci. Technol. (ISSN: 0013-936X) 40 (2006) 625.
URL: http://view.ncbi.nlm.nih.gov/pubmed/16468412.

http://refhub.elsevier.com/S0010-4655(14)00294-X/sbref1
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3609809
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3609809
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3609809
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3609809
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3609809
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3609809
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3609809
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3609809
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3609809
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3609809
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3609809
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3609809
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3609809
http://scitation.aip.org/content/aip/journal/jcp/135/5/10.1063/1.3609809
http://pubs.acs.org/doi/pdf/10.1021/ct200809m
http://pubs.acs.org/doi/abs/10.1021/ct200809m
http://refhub.elsevier.com/S0010-4655(14)00294-X/sbref4
http://doi.wiley.com/10.1002/wcms.25
http://www.sciencedirect.com/science/article/pii/0009261483807039
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.44.100193.001241
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.44.100193.001241
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.44.100193.001241
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.44.100193.001241
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.44.100193.001241
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.44.100193.001241
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.44.100193.001241
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.44.100193.001241
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.44.100193.001241
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.44.100193.001241
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.44.100193.001241
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.44.100193.001241
http://www.annualreviews.org/doi/abs/10.1146/annurev.pc.44.100193.001241
http://www.sciencedirect.com/science/article/pii/000926148585003X
http://link.aip.org/link/JCPSA6/v111/i13/p5691/s1%26Agg%3Ddoi
http://link.aip.org/link/JCPSA6/v114/i2/p661/s1%26Agg%3Ddoi
http://onlinelibrary.wiley.com/doi/10.1002/0470845015.cu0024/full
http://pubs.acs.org/doi/pdf/10.1021/ct100445s
http://pubs.acs.org/doi/abs/10.1021/ct100445s
http://www.ncbi.nlm.nih.gov/pubmed/15268300
http://link.aip.org/link/JCPSA6/v117/i5/p1982/s1%26Agg%3Ddoi
http://link.aip.org/link/JCPSA6/v118/i18/p8127/s1%26Agg%3Ddoi
http://www.ncbi.nlm.nih.gov/pubmed/18554005
http://www.ncbi.nlm.nih.gov/pubmed/20170212
http://pubs.acs.org/doi/abs/10.1021/ct100486q
http://xlink.rsc.org/?DOI=c2cp23757a
http://xlink.rsc.org/?DOI=c2cp23757a
http://xlink.rsc.org/?DOI=c2cp23757a
http://xlink.rsc.org/?DOI=c2cp23757a
http://xlink.rsc.org/?DOI=c2cp23757a
http://www.ncbi.nlm.nih.gov/pubmed/22358179
http://www.ncbi.nlm.nih.gov/pubmed/22358179
http://www.ncbi.nlm.nih.gov/pubmed/22358179
http://www.ncbi.nlm.nih.gov/pubmed/22358179
http://www.ncbi.nlm.nih.gov/pubmed/22358179
http://www.ncbi.nlm.nih.gov/pubmed/22358179
http://www.ncbi.nlm.nih.gov/pubmed/22358179
http://www.ncbi.nlm.nih.gov/pubmed/22358179
http://refhub.elsevier.com/S0010-4655(14)00294-X/sbref20
http://linkinghub.elsevier.com/retrieve/pii/S0009261401009666
http://openmp.org/wp
http://openmp.org/wp
http://openmp.org/wp
http://openmp.org/wp
http://refhub.elsevier.com/S0010-4655(14)00294-X/sbref23
http://dx.doi.org/10.1002/jcc.20018
http://refhub.elsevier.com/S0010-4655(14)00294-X/sbref25
http://pympi.sourceforge.net/index.html
http://www.springerlink.com/index/P72R78TN38X23Q72.pdf
http://doi.wiley.com/10.1002/qua.560220411
http://linkinghub.elsevier.com/retrieve/pii/0167797785900012
http://www.springerlink.com/index/10.1007/BF00526416
http://dx.doi.org/doi:10.1007/s00214-006-0171-8
http://refhub.elsevier.com/S0010-4655(14)00294-X/sbref33
http://refhub.elsevier.com/S0010-4655(14)00294-X/sbref34
http://pubs.acs.org/doi/pdf/10.1021/ct400054m
http://pubs.acs.org/doi/abs/10.1021/ct400054m
http://refhub.elsevier.com/S0010-4655(14)00294-X/sbref36
http://refhub.elsevier.com/S0010-4655(14)00294-X/sbref37
http://refhub.elsevier.com/S0010-4655(14)00294-X/sbref38
http://pubs.acs.org/doi/pdf/10.1021/ja00051a040
http://pubs.acs.org/doi/abs/10.1021/ja00051a040
http://pubs.acs.org/doi/pdf/10.1021/ci2004219
http://pubs.acs.org/doi/abs/10.1021/ci2004219
http://dx.doi.org/10.1002/jcc.21318
http://view.ncbi.nlm.nih.gov/pubmed/16468412


3188 J.M. Dieterich et al. / Computer Physics Communications 185 (2014) 3175–3188
[43] R. Curci, A. Dinoi, M.F. Rubino, Pure Appl. Chem. (ISSN: 1365-3075) 67 (1995)
URL: http://dx.doi.org/10.1351/pac199567050811.

[44] J.K. Crandall, R. Curci, L. D’Accolti, C. Fusco,Methyl(trifluoro-methyl)dioxirane,
John Wiley & Sons, Ltd., Chichester, UK, ISBN: 0471936235, 2001, URL:
http://dx.doi.org/10.1002/047084289x.rm267.pub2.

[45] L. Zou, R.S. Paton, A. Eschenmoser, T.R. Newhouse, P.S. Baran, K.N. Houk, J. Org.
Chem. 78 (2013) 4037. URL: http://dx.doi.org/10.1021/jo400350v.

[46] K. Anderson, Dioxirane compounds and uses thereof (2013), wO Patent App.
PCT/US2012/025,211,
URL: http://www.google.com/patents/WO2013122582A1?cl=en.

[47] R.D. Bach, J.L. Andres, A.L. Owensby, H.B. Schlegel, J.J.W.McDouall, J. Am. Chem.
Soc. 114 (1992) 7207.
URL: http://chem.wayne.edu/schlegel/Pub_folder/143.pdf.

[48] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
URL: http://link.aip.org/link/JCPSA6/v98/i7/p5648/s1&#38;Agg=doi.

[49] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994)
11623. URL: http://dx.doi.org/10.1021/j100096a001.

[50] R.H. Hertwig, W. Koch, Chem. Phys. Lett. (ISSN: 00092614) 268 (1997) 345.
URL: http://dx.doi.org/10.1016/s0009-2614(97)00207-8.

[51] R. Ditchfield,W.J. Hehre, J.A. Pople, J. Chem. Phys. (ISSN: 0021-9606) 54 (2003)
724. URL: http://dx.doi.org/10.1063/1.1674902.

[52] W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. (ISSN: 0021-9606) 56 (2003)
2257. URL: http://dx.doi.org/10.1063/1.1677527.

[53] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen,
S. Koseki, N.Matsunaga, K.A. Nguyen, S. Su, et al., J. Comput. Chem. (ISSN: 0192-
8651) 14 (1993) 1347. URL: http://dx.doi.org/10.1002/jcc.540141112.

[54] M.S. Gordon,M.W. Schmidt, Advances in Electronic Structure Theory: GAMESS
a Decade Later, Elsevier, Amsterdam, 2005, pp. 1167–1189.
[55] T.H. Dunning, J. Chem. Phys. (ISSN: 0021-9606) 90 (1989) 1007. URL:
http://dx.doi.org/10.1063/1.456153.

[56] NIST computational chemistry comparison and benchmark database, NIST
Standard Reference Database Number 101, Release 16a (2013), [online]
http://cccbdb.nist.gov/, URL: http://cccbdb.nist.gov/.

[57] E.F.V. Scriven (Ed.), Azides and Nitrenes: Reactivity and Utility, Academic,
New York, 1984.

[58] B. Iddon, O. Meth-Cohn, E.F.V. Scriven, H. Suschitzky, P.T. Gallagher, Angew.
Chem., Int. Ed. Engl. 18 (1979) 900.
URL: http://dx.doi.org/10.1002/anie.197909001.

[59] F. Kotzyba-Hibert, I. Kapfer, M. Goeldner, Angew. Chem., Int. Ed. Engl.
(ISSN: 0570-0833) 34 (1995) 1296.
URL: http://dx.doi.org/10.1002/anie.199512961.

[60] S.M. Mandel, J.A. KrauseBauer, A.D. Gudmundsdottir, Org. Lett. 3 (2001) 523.
URL: http://dx.doi.org/10.1021/ol0068750.

[61] W. Carl Lineberger,W. Thatcher Borden, Phys. Chem. Chem. Phys. (ISSN: 1463-
9076) 13 (2011) 11792. URL: http://dx.doi.org/10.1039/c0cp02786c.

[62] A. DeFusco, J. Ivanic, M.W. Schmidt, M.S. Gordon, J. Phys. Chem. A 115 (2011)
4574. URL: http://dx.doi.org/10.1021/jp112230f.

[63] P.N. Day, J.H. Jensen, M.S. Gordon, S.P. Webb, W.J. Stevens, M. Krauss,
D. Garmer, H. Basch, D. Cohen, J. Chem. Phys. (ISSN: 0021-9606) 105 (1996)
1968. URL: http://dx.doi.org/10.1063/1.472045.

[64] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford Science
Publications (Oxford University Press), USA, ISBN: 0198556454, 1989, URL:
http://www.worldcat.org/isbn/0198556454.

[65] M.J. Travers, D.C. Cowles, E.P. Clifford, G.B. Ellison, P.C. Engelking, J. Chem. Phys.
(ISSN: 0021-9606) 111 (1999) 5349. URL: http://dx.doi.org/10.1063/1.479795.

[66] Jmol: an open-source Java viewer for chemical structures in 3D, [online]
http://www.jmol.org/.

http://dx.doi.org/10.1351/pac199567050811
http://dx.doi.org/10.1002/047084289x.rm267.pub2
http://dx.doi.org/10.1021/jo400350v
http://www.google.com/patents/WO2013122582A1?cl%3Den
http://chem.wayne.edu/schlegel/Pub_folder/143.pdf
http://link.aip.org/link/JCPSA6/v98/i7/p5648/s1%26#38%3BAgg%3Ddoi
http://dx.doi.org/10.1021/j100096a001
http://dx.doi.org/10.1016/s0009-2614(97)00207-8
http://dx.doi.org/10.1063/1.1674902
http://dx.doi.org/10.1063/1.1677527
http://dx.doi.org/10.1002/jcc.540141112
http://refhub.elsevier.com/S0010-4655(14)00294-X/sbref54
http://dx.doi.org/10.1063/1.456153
http://cccbdb.nist.gov/
http://cccbdb.nist.gov/
http://refhub.elsevier.com/S0010-4655(14)00294-X/sbref57
http://dx.doi.org/10.1002/anie.197909001
http://dx.doi.org/10.1002/anie.199512961
http://dx.doi.org/10.1021/ol0068750
http://dx.doi.org/10.1039/c0cp02786c
http://dx.doi.org/10.1021/jp112230f
http://dx.doi.org/10.1063/1.472045
http://www.worldcat.org/isbn/0198556454
http://dx.doi.org/10.1063/1.479795
http://www.jmol.org/

	Shared-memory parallelization of a local correlation multi-reference CI program
	Introduction
	Methodology
	Results and discussion
	Performance assessment
	Applications of parallel, local MRSDCI theory
	Localized MRSDCI Study of Alkyl(trifluoromethyl)dioxirane and its reaction with chloride ion
	LMRSDCI study of singlet--triplet splitting energy gap of methyl nitrene, methyl nitrene-- (H2O)10 , and methyl nitrene-- (H2O)15  clusters


	Conclusions
	Acknowledgments
	References


