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HYBRID SCHEME

In the following, we present the details of our hybrid scheme for implementing OFDFT. We partition the system
into atom-centered spheres and an interstitial region (see Fig. 1(a) in the main manuscript). Within this muffin tin
(MT) geometry, ρ is written as a sum of contributions from the MT spheres and the interstitial region [Fig. 1(c)],

ρ(~r) =
∑
R

ρR(~rR) + ρI(~r), (1)

where ρR(~rR) is the electron density inside the MT sphere centered on site ~R, ρI(~r) is the interstitial electron density

which is 0 inside the spheres and ~rR = ~r − ~R. To explicitly include the angular momentum dependence in EOF, we
introduce fixed atom-centered basis functions [Fig. 1(b)] to express ρR as

ρR(~rR) =
∑

lm,l′m′

NR,lm,l′m′ψ∗R,lm(~rR)ψR,l′m′(~rR). (2)

We omit spin indices for simplicity. NR is the on-site density matrix. The fixed atom-centered basis functions
ψR,lm(~rR) = φR,l(rR)Ylm(~̂rR), where φR,l(rR) is the radial wave function and Ylm(~̂rR) are the spherical harmonics.
Using Eqs. (1)-(2) the general total energy functional of OFDFT can be rewritten as

EOF[ρ(~r)] = EOF[{NR}, ρI(~r)], (3)

where the on-site density matrices {NR} and the interstitial electron density ρI become the basic independent variables.

DERIVATION OF THE NONLOCAL ENERGY

We now derive analytical expressions for the nonlocal energy term ENL we introduce in the main manuscript. We
begin by considering in more detail the kinetic energy error ∆Ts = Ts−TKEDF

s . After neglecting∆Ts in the interstitial
region as justified in the main text, we introduce a smooth scaling function f(r) in the energy density of Ts − TKEDF

s

to make the KE density continuous at the sphere boundary. ∆Ts then becomes

∆Ts '
∑
R

∫
MT

[τs(~rR)− τKEDF
s (~rR)]d~rR

'
∑
R

∫
MT

f(rR)[τs(~rR)− τKEDF
s (~rR)]d~rR

(4)

where f is spherical inside the spheres and 0 ≤ f ≤ 1, and τs and τKEDFs are the exact and approximate KE
densities, respectively. f = 0 at the sphere boundary and in the interstitial region, ensuring the KE density is
continuous everywhere. When combining Eq. 4 with the KEDF in Eq.(1) of the main manuscript, we arrive at a
rigorous hybrid KE model for the AMD-OFDFT total energy as follows,

T hybrid
s = TKEDF

s + ∆Ts

=

∫
τKEDF
s (~r)d~r +

∑
R

∫
MT

f(rR)[τs(~rR)− τKEDF
s (~rR)]d~rR

=

∫
[1− f(~r)]τKEDF

s d~r +

∫
f(~r)τs(~r)d~r (5)
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Inside the MT spheres, a part of the KEDF is replaced by the exact KE, correcting different types of errors due to
the KEDF in the core region. Thus, the accuracy of OFDFT can be enhanced. This hybrid KE model provides us
with a sophisticated basis to find a solution for ENL. However, determining the optimal f(rR) on a large number of
grid points is extremely challenging, even though we know f values at and beyond the MT boundary. Thus, in the
following, we proceed further to derive a general form for ENL in terms of the on-site density matrix NR and a small
set of on-site, angular-momentum-dependent energies, yielding an easily applicable scheme.

After neglecting the KE error in the interstitial region and introducing a scaling function for the KE density within
the MT spheres, the approximated nonlocal energy term ENL becomes

ENL ' ENLPS
i−e + ∆Ts

= ENLPS
i−e +

∑
R

[∫
MT

f(rR)τs(~rR)d~rR −
∫

MT

f(rR)τKEDF
s (~rR)d~rR

]
= ENLPS

i−e + [T̃s]MT − [T̃KEDF
s ]MT, (6)

where [T̃s]MT and [T̃KEDF
s ]MT are the exact KE and KEDF inside the MT spheres, scaled by the function f(r).

In the following, we give a term-by-term derivation of the nonlocal energy ENL presented in Eq. 6. As we know, the
contributions of the nonlocal parts of the pseudopotential and the exact noninteracting kinetic energy to ENL[NR]
depend linearly on the total occupation number of each l channel,

ENLPS
i−e [NR] =

∑
R,lm

N lm
R 〈ψR,lm|V li−e|ψR,lm〉MT

=
∑
R,l

N total
R,l

∫ Ws

0

φ∗R,l(r)V
l
i−e(r)φR,l(r)r

2dr

∫
Y ∗lmYlmdΩ

=
∑
R,l

N total
R,l

∫ Ws

0

φ∗R,l(r)V
l
i−e(r)φR,l(r)r

2dr

=
∑
R,l

N total
R,l El,NLPS

R , (7)

where ψR,lm(~r) = φR,l(r)Ylm(~̂r), and we have introduced the shorthand notation N lm
R = NR,lm,lm, and

[T̃s]MT = −1

2

∑
R,lm

N lm
R 〈fψR,lm|∇2|ψR,lm〉MT

= −1

2

∑
R,l

N total
R,l

∫ Ws

0

f(r)φ∗R,l(r)

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

r2

]
φR,l(r)r

2dr

∫
Y ∗lmYlmdΩ

= −1

2

∑
R,l

N total
R,l

∫ Ws

0

f(r)φ∗R,l(r)

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

r2

]
φR,l(r)r

2dr

=
∑
R,l

N total
R,l El,Ts

R , (8)

where N total
R,l =

∑l
m=−lN

lm
R , and El,NLPS

R and El,Ts

R are constants, only depending on the shape of the basis functions

of each l channel. Consequently, a linear term in ENL can easily accommodate the AMD effects of Enonlocal
i−e and

[Ts]MT. Our task is therefore to find the linear and major nonlinear errors of the KEDF used to describe the system,
so that we can make corrections for these errors to generate correct occupations and physical properties.

We start by considering a KEDF of the general form TKEDF
s [{ρR}] = TKEDF

s [{NR}], where ρR is given by Eq. (2).
We make a Taylor expansion around the average occupation numbers N0

R,l = N total
R,l /(2l + 1) of each l channel to

obtain

T̃KEDF
s [{NR}] = T̃KEDF

s [{N0
R,l}] +

∑
R,lm

∂T̃KEDF
s

∂N lm
R

∣∣∣∣∣
{N0

R,l
}

∆N lm
R +

1

2

∑
R,lm,l′m′

∂2T̃KEDF
s

∂N lm
R ∂N l′m′

R

∣∣∣∣∣
{N0

R,l
}

∆N lm
R ∆N l′m′

R

+
1

6

∑
R,lm,l′m′,l′′m′′

∂3T̃KEDF
s

∂N lm
R ∂N l′m′

R ∂N l′′m′′
R

∣∣∣∣∣
{N0

R,l
}

∆N lm
R ∆N l′m′

R ∆N l′′m′′

R +O(∆N4
R), (9)
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where ∆N lm
R = N lm

R −N0
R,l. The contribution of off-diagonal elements of the density matrix is neglected because of

the small hybridization of different l-channels in the core region. At the average occupation N lm
R = N0

R,l, the electron
density is spherical,

ρ0
R(rR) =

1

4π

∑
l

(2l + 1)N0
R,lφ

2
R,l(rR) =

∑
l

N total
R,l ρR,l(rR),

where ρR,l(r) = 1
4πφ

2
R,l(r). The different terms in the above Taylor expansion play different roles. In the following,

we consider each term of Eq.(9) individually.

The first term T̃KEDF
s [{N0

R,l}] = T̃KEDF
s [{N total

R,l }] determines the magnitude of the KE and the total occupation of
each l channel inside the spheres. We can expand this term further according to different physical situations. Here, we
consider transition metals, atoms with highly localized electrons around the cores. In transition metals, the electron
density in the core region is dominated by the d channel contribution, i.e., N total

R,d � {N total
R,s , N total

R,p }. Therefore, we

make another Taylor expansion of T̃KEDF
s [{N0

R,l}] at N0
R,s = 0 and N0

R,p = 0 because of their small occupations,

T̃KEDF
s [N0

R,l] = T̃KEDF
s [N0

R,l]
∣∣∣
N0

R,s/p
=0

+
∑
l=s,p

∂T̃KEDF
s [N0

R,l]

∂N0
R,l

∣∣∣∣∣
N0

R,s/p
=0

N0
R,l + . . . . (10)

We only consider terms up to first order. It is clear that T̃KEDF
s [{N0

R,l}]
∣∣∣
N0

R,s/p
=0

and
∂T̃KEDF

s [N0
R,l]

∂N0
R,l

∣∣∣∣
N0

R,s/p
=0

only

depend on N0
R,d of the localized electrons. For the Thomas-Fermi (TF) KEDF [1] contribution, we find

T̃TF
s [N0

R,l]
∣∣∣
NR,s/p=0

= αTF

∫
MT

f(r)[N total
R,d ρR,d(r)]

5
3 d~r

= (N total
R,d )

5
3αTF

∫
MT

f(r)ρ
5
3

R,d(r)d~r

= (N total
R,d )

5
3VTF, (11)

where VTF = αTF

∫
f(r)ρ

5
3

R,d(r)d~r is a constant depending only on the fixed radial basis function φR,d. Similarly, for
the first order expansion coefficients for l = s, p, we find

∂T̃TF
s [N0

R,l]

∂N0
R,l

∣∣∣∣∣
N0

R,s/p
=0

=

∫
MT

δT̃TF
s

δρ

∂ρ

∂N0
R,l

∣∣∣∣∣
N0

R,s/p
=0

d~r

=
5

3
(2l + 1)αTF

∫
MT

f(r)[N total
R,d ρR,d(r)]

2
3 ρR,l(r)d~r

=
5

3
(2l + 1)αTF(N total

R,d )
2
3

∫
MT

f(r)ρ
2
3

R,d(r)ρR,l(r)d~r

= (N total
R,d )

2
3CTF

R,l . (12)

Here CTF
R,l is a constant that is determined by the radial wavefunctions φR,l=s,p and φR,d.

For the von Weizsäcker (vW) KEDF [2] contribution, we have

T̃ vW
s [N0

R,l]
∣∣∣
NR,s/p=0

= N total
R,d αvW

∫
MT

f(r)
∇√ρR,d ∇

√
ρR,d

2
d~r

= N total
R,d EvW

R,d . (13)

Here EvW
R,d = αvW

∫
MT

∇√ρR,d∇
√
ρR,d

2 d~r depends only on the radial wavefunction φR,d, and

∂T̃ vW
s [N0

R,l]

∂N0
R,l

∣∣∣∣∣
N0

R,s/p
=0

= (2l + 1)αvW

∫
MT

[−f(r)
∇ρR,d∇ρR,d

ρR,d
− 2∇(f(r)

∇ρR,d
ρR,d

)]d~r

= CvW
R,l . (14)
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CvW
R,l obviously also only depends on the radial wavefunction of the φR,l and φR,d channels.

For the case of a nonlocal KEDF (e.g., WGC99 [3]), we obtain

T̃NL
s [N0

R,l]
∣∣∣
NR,s/p=0

= (N total
R,d )α+β

∫
MT

∫
MT

f(r)ραR,d(r)W (|~r − ~r ′|) ρβR,d(r
′)d~rd~r ′

= (N total
R,d )

5
3V NL

R,d , (15)

since α+ β = 5/3, and

∂T̃NL
s [N0

R,l]

∂N0
R,l

∣∣∣∣∣
N0

R,s/p
=0

= (N total
R,d )α+β−1(2l + 1)

∫
MT

∫
MT

f(r)[αρα−1
R,d (r)ρR,l(r)W (|~r − ~r ′|)

· ρβR,d(r
′) + βραR,d(r)W (|~r − ~r ′|)ρβ−1

R,d (r′)ρR,l(r
′)]d~rd~r ′

= (N total
R,d )

2
3CNL

R,l . (16)

Again, the constants V NL
R,d and CNL

R,l depend only on the fixed radial basis functions.
Combining Eqs. (11)-(16), we can approximate

T̃TF+vW+NL
s [N0

R,l] ≈ (V TF
R,d + V NL

R,d) · (N total
R,d )

5
3 +N total

R,d EvW
R,d

+
∑
l=s,p

[(CTF
R,l + CNL

R,l)(N
total
R,d )

2
3 + CvW

R,l ]

2l + 1
N total
R,l . (17)

Here we want to emphasize that all the parameters defined above, such as C, V and E, are determined by the fixed
radial basis functions, and thus are system independent. This system independence promises that the approximation to
ENL using the above form features good transferability as long as the basis functions are transferable. A more accurate
approximation can be obtained by including higher order terms in the expansion of the functional TTF+vW+NL

s [N0
R,l]

in Eq. (10). Eq. (10) applies if N total
R,d � N total

R,s/p in the core region, e.g., for transition metals. According to the above
ideas, one can also derive a similar formula for, e.g., oxygen, where the p channel is localized and dominates in the
core region. Because the d channel in transition metals is localized, N total

R,d only weakly responds to system changes.
Therefore, as a good approximation for the present case of transition metals, we can rewrite Eq. (17),

T̃TF+vW+NL
s [N0

R,l] = V d,KEDF
R (N total

R,d )
5
3 +

∑
R,l=s,p,d

N total
R,l El,KEDF

R . (18)

Combination of Eq. (7), Eq. (8) and Eq. (18) gives the first two leading terms in ENL used in the main manuscript

ENLPS + T̃s − T̃KEDF
s [N0

R,l] =
∑
R,l

N total
R,l El,NLPS

R +
∑
R,l

N total
R,l El,Ts

R − V d,KEDF
R (N total

R,d )
5
3 −

∑
R,l

N total
R,l El,KEDF

R

=
∑
R,l

N total
R,l ElR − V

d,KEDF
R (N total

R,d )
5
3 . (19)

The first term contains all the linear contributions of NLPS and T̃s and −T̃KEDFs and the second term corrects the
leading nonlinear contributions in the KEDF. In a more general form, we can rewrite the second term in Eq. (19) to
obtain

ENL =
∑
R,l

N total
R,l ElR −

∑
R,l

V l,KEDF
R (N total

R,l )
5
3 . (20)

For transition metals, V
l=s/p,KEDF
R = 0 and only V d,KEDF

R remains. The discussions above suggest good transferability
of the parameters in the above equation.

We next consider the first order term in Eq. (9): one can easily confirm that
∂T̃TF/vW

s

∂N lm
R

∣∣∣
{N0

R,l
}

is independent of the

magnetic quantum number m,

∂T̃
TF/vW
s

∂N lm
R

∣∣∣∣∣
N0

R,l

=

∫
MT

δT̃
TF/vW
s

δρ

∂ρ

∂N lm
R

∣∣∣∣∣
{N0

R,l
}

d~r
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=

∫
MT

δT̃
TF/vW
s

δρ

∣∣∣∣∣
{N0

R,l
}

φ2
R,l(r)|Ylm|2r2drdΩ

=

∫ Ws

0

δT̃
TF/vW
s

δρ

∣∣∣∣∣
{N0

R,l
}

φ2
R,l(r)r

2dr

= AlR, (21)

since
δT̃KEDF

s

δρ

∣∣∣
{N0

R,l
}

is a spherical potential because of the spherical electron density when N lm
R = N0

R,l. This leads to

∑
lm

∂T̃
TF/vW
s

∂N lm
R

∣∣∣∣∣
{N0

R,l
}

∆N lm
R =

∑
l

AlR

l∑
m=−l

∆N lm
R = 0.

However, for the WGC99 KEDF [3], the NL part
∂TNL

s

∂N lm
R

∣∣∣
{N0

R,l
}

explicitly depends on the quantum number m, due to

its nonlocal nature and the non-spherical density distribution in the given crystal structure. Therefore, this NL KEDF
part contributes to the first order term, which consequently depends on the symmetry of the structure. This symmetry
dependence results in a first order error in Eq. (9). However, contributions of the NL KEDF term are small and can
be further reduced by introducing a weighting function for the KEDF [4]. We thus neglect this first order term for ENL.

In the following, we focus next on the second and third order terms for different KEDFs in Eq. (9). Since the s
channel features only a single m value, NR,s −N0

R,s = 0, i.e., it does not contribute. We neglect contributions from
the largely unoccupied p channel since they are very small for transition metals. Thus, the second and third terms in
Eq.(9) are simplified as,

1

2

∑
R,l=d,m,m′

∂2T̃KEDF
s

∂N lm
R ∂N lm′

R

∣∣∣∣∣
{N0

R,l
}

∆N lm
R ∆N lm′

R +

1

6

∑
R,l=d,m,m′,m′′

∂3T̃KEDF
s

∂N lm
R ∂N lm′

R ∂N lm′′
R

∣∣∣∣∣
{N0

R,l
}

∆N lm
R ∆N lm′

R ∆N lm′′

R + . . . . (22)

From now on, we only consider the TF and vW KEDFs for the coefficients of second and third order terms because of
their dominant contributions (as compared to the NL part of the KEDF). For the second order coefficients, we have

1

2

∂2T̃
TF/vW
s

∂Ndm
R ∂Ndm′

R

∣∣∣∣∣
{N0

R,l
}

=
1

2

∫
MT

δ2T̃
TF/vW
s

δρ2

∣∣∣∣∣
{N0

R,l
}

|ψR,dmψR,dm′ |2d~r

=
1

2

∫ Ws

0

δ2T̃
TF/vW
s

δρ2

∣∣∣∣∣
{N0

R,l
}

φ2
R,dφ

2
R,dr

2dr ·
∫
|YdmYdm′ |2dΩ

=
1

2
(4π)2

∫ Ws

0

δ2T̃
TF/vW
s

δρ2

∣∣∣∣∣
{N0

R,l
}

ρ2
R,dr

2dr

∫
|YdmYdm′ |2dΩ

= U
TF/vW,d
R Adm,dm′ , (23)

since
δ2T̃TF/vW

s

δρ2

∣∣∣
{N0

R,l
}

is spherical inside the MT spheres. Here the quantity U
TF/vW,d
R = 2π

∫Ws

0
δ2TTF/vW

s

δρ2 |N0
R,l

ρ2
R,dr

2dr, and Alm,lm′ = 4π
∫
|YlmYlm′ |2dΩ which measures the overlap of the different spherical harmonics and is

system independent. Therefore, the second order term can be rewritten as

1

2

∑
R,l=d,m,m

∂2T̃
TF/vW
s

∂N lm
R ∂N lm′

R

∣∣∣∣∣
{N0

R,l
}

∆Ndm
R ∆Ndm′

R ≈
∑
R,l=d

U
TF/vW,d
R

2∑
m,m′=−2

Adm,dm′∆Ndm
R ∆Ndm′

R

=
∑
R,l=d

Ũ
TF/vW,d
R

2∑
m=−2

(∆Ndm
R )2, (24)
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since we numerically find the relations: Adm,dm′,m 6=m′ = 1
3Adm,dm, Adm,dm = Adm′,dm′ for m 6= m′. Here ŨdR =

2
3U

TF/vW,d
R Adm,dm. It is obvious that Ũ

TF/vW
R,d depends on the N0

R,l because of the dependence in U
TF/vW,d
R as defined

after Eq. (23) as a functional of ρ. To obtain system independent parameters for expressing the U
TF/vW,d
R , one can

proceed further by Taylor expansion for U
TF/vW,d
R around N0

R,s/p = 0. Since the localized d electrons dominate the
MT spheres in transition metals, we adopt the above form for the present Letter as a proof of principle. Future work

will include a more transferable model for U
TF/vW,d
R [4]. Finally, we consider the third order expansion coefficients in

Eq. (22),

1

6

∂3T̃
TF/vW
s

∂N lm
R ∂N lm′

R ∂N lm′′
R

∣∣∣∣∣
{N0

R,l
}

=
1

6

∫
MT

δ3T̃
TF/vW
s

δρ3

∣∣∣∣∣
{N0

R,l
}

|ψR,dmψR,dm′ψR,dm′′ |2d~r

=
1

6

∫
MT

δ3T̃
TF/vW
s

δρ3

∣∣∣∣∣
{N0

R,l
}

(φ2
R,d)

3|YdmYdm′Ydm′′ |2d~r

=
1

6

∫ Ws

0

δ3T̃
TF/vW
s

δρ3

∣∣∣∣∣
{N0

R,l
}

(φ2
R,d)

3r2dr

∫
|YdmYdm′Ydm′′ |2dΩ

=
1

6
(4π)3

∫ Ws

0

δ3T̃
TF/vW
s

δρ3

∣∣∣∣∣
{N0

R,l
}

ρ3
R,dr

2dr

∫
|YdmYdm′Ydm′′ |2dΩ

= K
TF/vW,d
R Λd,m,m′,m′′ , (25)

where K
TF/vW,d
R = 2π

3

∫Ws

0
δ3TTF/vW

s

δρ3

∣∣∣
{N0

R,l
}
ρ3
R,dr

2dr, and Λd,m,m′,m′′ =
∫

(4π)2|YdmYdm′Ydm′′ |2. Similar to

U
TF/vW,d
R , K

TF/vW,d
R depends on N0

R,l, as we show in Ref. [4]. However, the MT region is, for transition metal-

s, again dominated by the localized d electrons. For the applications in this Letter, we do not consider this N0
R,l

dependence . We will apply the more accurate model [4] for K
TF/vW,d
R in our future work.

The quantities Λd,m,m′,m′′ and Ad,m,m′ are evaluated numerically by using a Lebedev quadrature grid [5].
Summarizing, by combining Eqs. 6, 20, 22, 23, and 25, we obtain a form of ENL as follows,

ENL[{NR}] =
∑
R,l

ElRN
total
R,l −

∑
R,l

V lR(N total
R,l )5/3 −

∑
R,l,mm′

U lRAl,mm′∆N lm
R ∆N lm′

R

−
∑

R,l,mm′m′′

Kl
RΛl,mm′m′′∆N lm

R ∆N lm′

R ∆N lm′′

R , (26)

Although we derive this form based on transition metals in which the ionic core region is dominated by the d channel,
it can be easily generalized to elements with s or p channel dominating the core region.

COMPUTATIONAL DETAILS

In all our calculations at different levels of theory, the Perdew-Burke-Ernzerhof (PBE)[6] form of the generalized gra-
dient approximation is used as the exchange-correlation functional, and a nonlinear core correction [7] is applied for Ti.

Our KSDFT-NLPS calculations are carried out using the ABINIT [8] software package. The Troullier-Martins
(TM) form [9] of the nonlocal pseudopotential (NLPS) with a nonlinear core correction is used and generated by the
FHI98 code [10] with rcutoff = 2.2 bohr and rnlc = 1.2 bohr as the cutoff radius for the core electron density. The
kinetic energy cutoff for the plane wave basis is 1600 eV (equivalent to 6400 eV in our OFDFT code PROFESS 2.0
[11]) for the different Ti bulk phases. We use the following Monkhorst-Pack grids for k-point sampling: 30x30x20
for HCP, 30x30x30 for FCC, 30x30x30 for BCC, and 26x26x26 for SC within cells containing 2, 1, 2, and 1, respec-
tively. In the calculations of surface formation energies, we use the following k-point sampling: 26x26x1 for all the
surfaces (FCC (100), BCC (100), and HCP (0001)) within the periodic cells containing 17, 15, and 15 atomic layers,
respectively, with 1 atom in each atomic layer. The vacuum thickness that separates the surfaces in all calculations
is 22 Angstroms. For the vacancy formation energy calculation, we use k-point sampling of 8x8x10 for the supercell
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containing 63 atoms and 1 vacancy site.

The bulk local pseudopotential (BLPS) [12] used in KS-BLPS and conventional OF-BLPS calculations is obtained
by inverting the Kohn-Sham equations according to the procedure outlined in [13]. We use the Ti BCC phase for this
inversion, because we found that the HCP and FCC phases generate very scattered potential values in Fourier space.
We also used the same nonlinear core correction in the construction of the BLPS, with the core density constructed
with FHI98. The KS-BLPS calculation is done by ABINIT with the same kinetic energy cutoff and k-point sampling
as KS-NLPS that excellently converges all results.

OFDFT calculations do not require k-point sampling. For the conventional OF-BLPS calculation, we use a kinetic
energy cutoff of 6400 eV which well converges all results.

For the AMD OFDFT calculations, we use the s channel of the TM NLPS as the local pseudopotential with
nonlinear core correction, with a kinetic energy cutoff of 11000 eV to converge the total energy to an error below 0.5
meV per titanium atom. The basis functions inside the MT sphere are derived from KS-NLPS calculation of the Ti
FCC phase at its equilibrium lattice structure. We use 2.2 bohr for the MT inner sphere radius and 2.7 bohr for
the outer sphere radius. (The required mapping from the spheres onto the Cartesian grid induces serious numerical
instabilities that are avoided by the use of a double sphere technique combined with a double grid approach [4].)

We use the same formula as Ref. [14] to determine the bulk moduli of different phases and the elastic constants of
the HCP structure. The vacancy formation energy is calculated by employing Eq.5 in Ref. [15] at fixed volume in the
limit of an infinitely large system,

Evf = E[63, 1, V ]− 63

64
E[64, 0, V ], (27)

where E[63, 1, V ] is the total energy of a cell with 63 Ti atoms and one vacancy site, E[64, 0, V ] = 64EHCP, where
EHCP is the ground state energy of the bulk Ti HCP phase per atom, and V = 64VHCP, where VHCP is the ground
state volume per atom of the bulk Ti HCP phase.
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