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CONSPECTUS: Ab initio modeling of matter has become a pillar of chemical research:
with ever-increasing computational power, simulations can be used to accurately predict,
for example, chemical reaction rates, electronic and mechanical properties of materials,
and dynamical properties of liquids. Many competing quantum mechanical methods have
been developed over the years that vary in computational cost, accuracy, and scalability:
density functional theory (DFT), the workhorse of solid-state electronic structure
calculations, features a good compromise between accuracy and speed. However,
approximate exchange−correlation functionals limit DFT’s ability to treat certain
phenomena or states of matter, such as charge-transfer processes or strongly correlated
materials. Furthermore, conventional DFT is purely a ground-state theory: electronic
excitations are beyond its scope. Excitations in molecules are routinely calculated using
time-dependent DFT linear response; however applications to condensed matter are still limited.
By contrast, many-electron wavefunction methods aim for a very accurate treatment of electronic exchange and correlation.
Unfortunately, the associated computational cost renders treatment of more than a handful of heavy atoms challenging. On the
other side of the accuracy spectrum, parametrized approaches like tight-binding can treat millions of atoms. In view of the
different (dis-)advantages of each method, the simulation of complex systems seems to force a compromise: one is limited to the
most accurate method that can still handle the problem size. For many interesting problems, however, compromise proves
insufficient. A possible solution is to break up the system into manageable subsystems that may be treated by different
computational methods. The interaction between subsystems may be handled by an embedding formalism.
In this Account, we review embedded correlated wavefunction (CW) approaches and some applications. We first discuss our
density functional embedding theory, which is formally exact. We show how to determine the embedding potential, which
replaces the interaction between subsystems, at the DFT level. CW calculations are performed using a fixed embedding potential,
that is, a non-self-consistent embedding scheme. We demonstrate this embedding theory for two challenging electron transfer
phenomena: (1) initial oxidation of an aluminum surface and (2) hot-electron-mediated dissociation of hydrogen molecules on a
gold surface. In both cases, the interaction between gas molecules and metal surfaces were treated by sophisticated CW
techniques, with the remainder of the extended metal surface being treated by DFT. Our embedding approach overcomes the
limitations of conventional Kohn−Sham DFT in describing charge transfer, multiconfigurational character, and excited states.
From these embedding simulations, we gained important insights into fundamental processes that are crucial aspects of fuel cell
catalysis (i.e., O2 reduction at metal surfaces) and plasmon-mediated photocatalysis by metal nanoparticles. Moreover, our
findings agree very well with experimental observations, while offering new views into the chemistry. We finally discuss our
recently formulated potential-functional embedding theory that provides a seamless, first-principles way to include back-action
onto the environment from the embedded region.

1. INTRODUCTION

A system of (nonrelativistic) interacting electrons is governed
by the many-body Schrödinger equation. Within the approx-
imation of a finite basis set, a full configuration interaction (CI)
expansion that includes all possible electron configurations
yields exact results. However, full CI scales factorially with the
number of particles N. Truncated correlated wavefunction
(CW) methods, which scale polynomially with N, offer the
most accurate practical solution of the Schrödinger equation.
For example, coupled cluster single and double excitations with
perturbative triples, CCSD(T),1 scales as N7. While this scaling

is better than factorial, still only molecules of moderate size can
be treated, unless specially designed, reduced-scaling algorithms
are employed.2−4 Extending these methods to condensed
matter has been much more challenging and is prohibitively
expensive.5−7
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As a less demanding alternative, Kohn−Sham density
functional theory (KS-DFT) enjoys wide popularity as the
method of choice for electronic structure calculations because it
scales as N3 or less. KS-DFT rests on the Hohenberg−Kohn
theorems, which prove a one-to-one mapping between the
ground-state, 3N-dimensional, many-electron wavefunction of
interacting electrons, Ψ, and the corresponding ground-state
density, ρG(r), a three-dimensional object. Although the
Hohenberg−Kohn theorems guarantee this mapping, they
offer no constructive way to determine it. The unknown physics
lies in the so-called exchange−correlation (XC) potential.
While many approximations to the latter have been proposed,
its exact form remains elusive. Nevertheless, DFT applications
on ∼100 atoms are now routine.
One strategy to deal with large, complex systems requiring

high accuracy is to treat a small subset of atoms with expensive
CW methods embedded in an extended system described by a
more cost-effective technique. Several embedding schemes
exist.8 Electrostatic embedding is used for ionic crystals, where
the environment is well approximated by point charges. If
environment polarization is important, shell models can be
employed.9 Quantum mechanics/molecular mechanics (QM/
MM) is employed to study covalently bonded systems such as
semiconductor surfaces or biomolecules, as well as solutes in
solution. In QM/MM, the embedded region is treated using
quantum mechanics, while the background region is described
by classical force fields.10 The related ONIOM embedding
approach introduces several layers, each of which may be
treated by increasingly sophisticated ab initio QM methods.11

In projection-based schemes,12 the kinetic energy of the entire
system is treated exactly, and a DFT description of the outer
parts of a molecule may be combined with correlated
wavefunction methods for an embedded region, to treat, for
example, transition metal centers embedded in large mole-
cules.13 It is not clear how to extend this projection approach
beyond molecules to condensed matter. Another promising
approach is density-matrix embedding, in which the local
density matrix of a low-level method like a DFT approximation
in the region of interest is matched to the results of a high-level
method by adjusting a nonlocal embedding potential.14

Metals require different strategies, and multiple embedding
schemes exist. In Green’s function embedding,15 one defines an
artificial boundary to separate the region of interest and the
environment. Then the environment is replaced by the surface
Green’s function on the boundary of the region of interest.
However, it is not clear how to solve for the region of interest
with methods beyond mean-field theories. Another effective
means of metallic embedding, density functional embedding
theory (DFET), was first proposed by Govind, Wang, and
Carter, inspired by the work of Cortona,16 and Wesolowski and
Warshel.17 In DFET, the total electron density is partitioned
into the electron density of a cluster of atoms of interest plus
the electron density of the environment. Both the cluster and
the environment are treated quantum mechanically. The
influence of the environment on the cluster is replaced by an
embedding potential.8

DFET combines a periodic DFT description of the
environment with a CW treatment of the cluster. This
approach has been used to study, for example, ground and
excited states of CO molecules on palladium and copper
surfaces18−23 and strongly correlated Kondo states of cobalt on
copper and silver surfaces.24−28 The embedding potential is
formulated as density functional derivatives of a formally exact

(within DFT) interaction energy linking the cluster and the
environment.8 The original formulation required using
approximate kinetic energy density functionals (KEDFs) to
evaluate the kinetic energy component of the interaction
between subsystems. Since the exact form of the KEDF is
unknown, the reliability of embedding results could not be
guaranteed.
In this Account, we review two recent advances in DFET: (i)

a new DFET that delivers an ab initio embedding potential and
eliminates the need for approximate KEDFs29 and (ii) a
reformulation of DFET as a potential-functional embedding
theory (PFET)30 that provides a self-consistent way to couple
different subsystems in a seamless, first-principles manner.
While numerically more demanding, PFET self-consistently
accounts for the back-action of the embedded cluster on the
environment, or in the case of more than two subsystems, for
the interaction of each subsystem with all the others. Recent
DFET applications are discussed, including charge-transfer-
induced dissociation of an oxygen molecule on an aluminum
surface,31 and hot-electron-induced dissociation of hydrogen
molecules on gold nanoparticles.32,33 We close with a brief
summary and outlook on future development.

2. DENSITY-FUNCTIONAL EMBEDDING THEORY
In DFET, we partition the total system into subsystems, by
grouping atoms into subgroups. In the simplest case, the system
is decomposed into two subsystems, a cluster and an extended
environment [Figure 1a]. Usually, the cluster is defined by a

specific set of atoms comprising the region of interest. The
other atoms are considered as the environment. The total
energy of the entire system is then decomposed as

ρ ρ ρ ρ= + +E E E E[ ] [ ] [ , ]tot cluster cluster env env int cluster env (1)

where we have introduced the energy of the isolated cluster
(Ecluster) and isolated environment (Eenv), and the interaction
energy, Eint, that describes all additional energy contributions
due to their interaction.
The embedding potential for the cluster (environment) due

to the environment (cluster) is the functional derivative of the
interaction energy with respect to the cluster (environment)
electron density,8

Figure 1. (a) Schematic view of density-functional embedding theory:
a bulk system is partitioned into a (possibly periodic) bulk
environment and a finite-sized cluster. Their interaction is mediated
by an embedding potential, Vemb (red). (b) The embedding potential
is chosen such that the sum of the electron densities of cluster, ρcluster,
and environment, ρenv, reproduces the total electron density, ρtot,
which is calculated in advance.
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This definition allows for an arbitrary partitioning of the total
electron density, as long as the sum of the cluster and
environment electron densities matches the electron density of
the total system.29 We enforced a novel constraint in which the
two embedding potentials are required to be equivalent. Such a
constraint yields a unique, global embedding potential, that is,
Vemb
cluster = Vemb

env = Vemb, resulting in a unique electron density
partitioning.29 Such a unique density partitioning was first
shown for the chemical reactivity potential,34,35 and also
naturally appears in the (formally exact) partition DFT of
Cohen and Wasserman,36 where the total system is
decomposed into subsystems each handled by DFT. The goal
in DFET is to solve for this unique embedding potential, Vemb,
which then is used as an external potential in more refined
quantum mechanics calculations on the embedded cluster. To
obtain Vemb, we first calculate the total electron density ρtot. In
principle, any electronic structure method could be used for
this task; here we employ KS-DFT to solve for ρtot. The
subsystems are then solved individually using KS-DFT with the
same XC functional, with the current iteration’s Vemb as an
additional external potential. In practice, we use the same bulk
supercell for the total system and the individual subsystem
calculations. We aim to find a Vemb such that the sum of
subsystem electron densities matches the total electron density
[Figure 1b]. Such a Vemb can be efficiently solved for by an
optimized-effective potential procedure.29 The accuracy of the
embedding potential is then determined by the level of XC
functional used. In all of our applications thus far, Vemb is
derived from KS-DFT, since it is often sufficient to treat the
environment and the interaction between the environment and
cluster at the DFT level. By contrast, the cluster often requires
treatment by quantum mechanics methods beyond DFT.
Once Vemb is obtained, one proceeds with the embedded CW

calculations on the cluster with Vemb as an external potential.
CW techniques generally expand the wavefunction in a
Gaussian basis set. After determining the required matrix
elements of the many-particle Hamiltonian, , all calculations
can be compactly written in matrix form. We represent Vemb(r)
on a real-space grid, replicated periodically around the entire
cluster. For embedded CW calculations, the required
substitution = + Vemb emb consequently only enters the
setup of the calculations, where all necessary matrix elements
are calculated. This offers the substantial advantage that most
state-of-the-art quantum chemistry packages can be used with
minimal modifications, which only pertain to the calculation of
matrix elements.
A locally corrected total energy (beyond DFT) can be

obtained according to first order perturbation theory, which
yields a surprisingly simple and accurate expression in terms of
the DFT (Eemb,cluster

DFT ) and CW (Eemb,cluster
CW ) energies of the

embedded cluster,29

= + −E E E E( )tot tot
DFT

emb,cluster
CW

emb,cluster
DFT

(3)

The terms in parentheses can be interpreted as a correction to
the DFT energy of the entire system, Etot

DFT. This correction
accounts for the exchange−correlation energy of the electrons
in the cluster that is not accounted for properly by DFT. The
subtraction in eq 3 minimizes errors due to the relatively small
size of typical Gaussian basis sets: we use the same basis set to

evaluate the DFT and CW contributions to the embedded
cluster.
Note the formal similarity of our energy expression in eq 3

with the ONIOM approach; in the latter, the correction on the
cluster is assembled in a very similar way, but no embedding
potential is used in the calculation.11 While such a simpler
approach works well for covalently bonded systems, it fails to
account for the mutual polarization of the cluster and its
environment. Such a situation is unavoidable in metals, where
the electron density distribution features delocalized Bloch
states dramatically different from a small metal cluster. Our
embedding potential thus helps to restore the proper electronic
structure in such an embedded metal cluster. Reliable
embedded CW calculations can then be performed, as
discussed in the following section.

3. APPLICATIONS

3.1. Initial Oxidation of an Aluminum Surface

The preceding DFET formalism has thus far been used
primarily to investigate molecules interacting with metal
surfaces, a ubiquitous phenomenon central to understanding
catalysis, corrosion, and more. Unfortunately, details of the
processes involved remain poorly understood.37,38 Consider,
for example, the seemingly simple event of dissociative
adsorption of an oxygen molecule on a clean aluminum
surface. This case nicely illustrates the complexity in elucidating
surface reaction mechanisms from theory: experiments
consistently find greatly reduced sticking probabilities at low
incident energies39,40 suggestive of the presence of a barrier to
dissociation. By contrast, straightforward KS-DFT calculations
show no such barrier.41 On one hand, explanations in terms of
spin selection rules have been put forward.42,43 On the other
hand, CW calculations on isolated aluminum clusters obtaining
a barrier suggest approximate XC functionals as the culprit.44

However, the barrier might be due to finite cluster sizes used.
Thus, the origin of the adsorption barrier was still unclear.
To apply our embedding approach to this problem, we first

carve out a cluster [typically containing a dozen aluminum
atoms, see, for example, Figure 2a] from a clean aluminum
surface without the O2 molecule. We use the discussed DFET
embedding algorithm to calculate the embedding potential for
this aluminum cluster [see Figure 2b,c]. The embedding
potential forms an attractive shell at the boundary of the cluster
toward the rest of the extended surface, simulating the metallic
bonding between the cluster and the rest of the bulk material
[see Figure 2c,d]. By performing embedded CW and DFT
calculations using this fixed embedding potential, we evaluate
the locally corrected energy of eq 3 at different positions and
bond lengths of the approaching O2 molecule.31 The
embedding potential is not updated for each position of the
approaching O2. The reason is threefold: From a numerical
perspective, it is too costly to recalculate Vemb for each of the
approximately 200 points required for a single two-dimensional
potential energy surface. From a modeling perspective, the
short screening length of metal nanoclusters shields the effect
of the approaching O2 from the remainder of the metal surface,
as we have verified numerically.31 Most importantly, from a
physics perspective, the adsorption involves charge transfer
from the surface to the molecule. Since DFT does not reliably
model charge transfer,45 an embedding potential based on DFT
would carry over the inaccuracy of DFT to the boundary
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conditions of the embedded CW calculations, defeating the
purpose of the entire embedding calculation.
In contrast to KS-DFT, our embedded CW theory yields a

finite barrier toward dissociation [compare Figure 3a,b], for
different absorption sites and parallel as well as perpendicular
O2 orientations.

31 The average barrier height of 300−600 meV
is consistent with experimental measurements.39 Recent
experiments suggest that the barrier height strongly depends
on the precise orientation of the O2 molecule.46 Obtaining a full
six-dimensional potential energy surface, as required for
dynamics simulations, is unfortunately challenging due to the
considerable computational cost associated with the embedded
CW treatment. Work along these lines is in progress.
To elucidate the origin of the observed energy barrier, we

evaluate the charge and spin states of the approaching O2. We
find an abrupt change in these states at the top of the barrier
[see Figure 3c,d], suggesting charge transfer is suddenly
initiated at a distance of ∼2.3 Å from the surface and is
responsible for the adsorption barrier. The lack of a barrier in
conventional KS-DFT simulations is related to the lack of a

derivative discontinuity with respect to the electron number in
many conventional XC functionals.45 The absence of a
derivative discontinuity introduces spurious long-range charge
transfer between O2 and the aluminum surface, which in turn
artificially removes the dissociation barrier observed in
experiments and our embedding simulations.

3.2. Hot-Electron-Mediated Dissociation of H2 on Gold

A second example of the utility of DFET is treatment of local
excited states in condensed matter. Earlier work demonstrated
DFET’s ability to treat excited states of adsorbed molecules and
Kondo systems.20−22,25,26 Excited state chemistry is the next
frontier. The example we consider is plasmon-induced catalysis,
which offers the promise of efficiently driving chemical
reactions at low temperature and under ambient conditions.47

The experiment proceeds as follows. One optically generates
surface plasmons, that is, a collective oscillation of the electron
cloud, in a metal nanoparticle. For noble-metal nanoparticles of
suitable geometries, these excitations mostly decay into
electron−hole pairs of (approximately) known energy, namely,
the energy of the surface plasmon.48 Noble-metal nanoparticles
thus offer efficient means to generate hot electrons with high
throughput and low energy requirements at their surfaces.
Nanoparticle properties such as size, geometry, and choice of
metal readily allow tailoring the hot electron energy to match
the antibonding state of a specific adsorbed molecule one
wishes to dissociate. One could thus envision efficiently and
selectively enhancing catalytic reactions by aiming for the
energies of antibonding orbitals.
Understanding plasmon-mediated catalysis requires reliable

theoretical methods to predict energies of specific antibonding
orbitals of molecules near surfaces. Modeling of plasmon-
induced hot electrons requires treating excited states. Although
the linear-expansion delta self-consistent field extension of
DFT49 has been used to approximate excited-state potential
energy surfaces to model hot-electron adsorbate interactions,50

a more accurate treatment is beyond the scope of a ground-
state theory like DFT. While excited states featuring substantial
density rearrangement require state-specific embedding poten-
tials,51 excitations localized within the embedded region allow
for a simpler treatment.20−22,24−27,52 Due to the short screening
lengths of metals, we choose the latter for metal nanoparticles.
Describing the excited electron at the nanoparticle surface
requires both treatment of exited states and consideration of
the surface. Our embedding ansatz again furnishes the
combination of a periodic DFT description of the metal

Figure 2. (a) Aluminum(111) surface and approaching oxygen
molecule (blue). A possible selection of atoms for a bridge-site cluster
is shaded. (b) Bridge-site aluminum cluster [see shaded atoms in panel
a] consisting of 12 atoms (eight in the first and four in the second
layer). (c) Equipotential surface plot of the embedding potential for
the bridge cluster in panel b. Black triangles in the color bar mark the
contour values drawn. (d) 2D cut of the embedding potential shown in
c along the first atomic layer.

Figure 3. Potential energy surface (PES) of parallel O2 approaching Al(111) at the bridge site as a function of O2 bond length and surface distance
calculated using (a) periodic DFT and (b) embedded CW theory on the cluster shown in Figure 2.31 The embedded CW PES features a barrier
toward dissociation (see white arrow) of ∼600 meV, in excellent agreement with experiment. Contour line separation is 200 meV. (c) Charge and
(d) spin state of O2 using embedded CW theory. See inset for color codes. Reproduced with permission from ref 31. Copyright 2012 American
Physical Society.
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surface with a CW treatment of excited electrons in the
embedded cluster.
As a proof of principle, plasmons from Au nanoparticles were

recently used to efficiently generate hot electrons that
subsequently enabled H2 dissociation on Au nanoparticles
[Figure 4].32 Using a laser of suitable wavelength, plasmon

resonances in gold nanoparticles embedded in a titania
substrate were excited [Figure 5a]. Under an atmosphere of
hydrogen (H2) and deuterium (D2), one measures the
concentration of HD as a direct measure of dissociation and
recombination of hydrogen molecules [Figure 5b]. Using our
embedding ansatz, we calculated potential energy surfaces of
ground and excited states.32,33 We found a large decrease in
effective barrier height at specific excitation energies just below
the plasmon resonance energy, corresponding to a Feshbach
resonance of H2

− [compare Figure 5d,f], offering a clear
explanation of why dissociation is observed with the laser on:
the embedded CW properly describes charge transfer excited
states from the metal surface to the molecule; charge transfer
weakens the bond by populating the antibonding molecular
orbital; and the barrier in the excited state with the most charge

transfer character (the sixth excited state) decreases dramati-
cally to allow dissociation at low temperatures.

4. POTENTIAL-FUNCTIONAL EMBEDDING THEORY: A
SELF-CONSISTENT EMBEDDING FRAMEWORK

The non-self-consistent embedding potential formulation
outlined in section 2 does not consider changes in the
environment due to the CW description of the cluster. This is
an acceptable solution for cases where the screening length is
extremely short (a few ångströms) such as metals. Here, charge
transfer is screened on the length scale of the cluster size and
therefore the remaining environment may be approximated as
frozen. For semiconductors or semimetals, the screening length
may be much larger. In such cases, charge transfer upon
adsorption may change the surface electronic structure beyond
the cluster length scale. The embedding potential thus needs to
be updated using input from the CW description beyond the
non-self-consistent DFET (section 2) approach.
To overcome the above difficulties, we have developed

potential-functional embedding theory (PFET),30 where the
basic underlying variable to optimize is the embedding
potential, instead of electron densities. Such a formalism is
based on the fact that the embedding potential Vemb is a unique
property of the total system for a given system partitioning.34

In PFET, the energy of the entire system (consisting of α =
1, ..., K subsystems) is given by

∑ ρ ρ ρ ρ= +
α

α αE E V E V[ , ] [ , , , ..., ]Ktot emb int emb 1 2
(4)

where Eα[ρα, Vemb] is the subsystem energy functional that
depends on subsystem electron densities ρα and Vemb. Eint
describes the interaction between subsystems. The {ρα} are
obtained as the ground-state electron densities of the

Figure 4. Schematic view of H2 dissociation on Au by plasmon-
induced hot electron: (a) incoming photon, ν (red), generates (b) a
hot electron, e (blue), that jumps into the antibonding orbital of a
physisorbed H2 molecule (green), (c) leading to dissociation.

Figure 5. (a) High resolution transmission electron micrograph of a gold nanoparticle on a TiO2 substrate, used for demonstrating plasmon-
mediated catalysis. Interference fringes of d = 0.28 Å indicative of Au(111) facets. (b) Measured HD ratio as a function of time for different
nanoparticle diameters. Laser is turned on (see “on”) at first dashed line (t = 300 s), leading to a sudden substantial increase in HD count rate. As
soon as laser is switched off again (see “off”, t = 750 s), HD count rate drops. Pristine TiO2 substrate shows no measurable HD count rate. (c)
Schematic representation of dissociation by electronic excitation. (d−f) Embedded CW potential energy surface of parallel H2 approaching Au(111)
in (d) ground, (e) fifth, and (f) sixth excited states of hydrogen adsorbed on Au(111).33 The height of the barrier substantially decreases.
Reproduced with permission from ref 32. Copyright 2013 American Chemical Society.
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subsystems with Vemb as an additional external potential. The
number of electrons Nα in each subsystem is chosen such that
the chemical potentials μα in all subsystems are equal, μα =
μ∀α, for a given Vemb, providing the means for intersubsystem
charge transfer. Thus, subsystem electron numbers implicitly
depend on Vemb. The electron density of the total system, given
as a superposition of the subsystem electron densities, is
therefore a functional of Vemb. Because of the Hohenberg−
Kohn theorems, the total system is uniquely determined by its
ground state electron density. We therefore search for the Vemb
that reproduces this unique electron density. In practice, we
obtain Vemb by minimizing the total energy with respect to Vemb,
with subsystem electron numbers {Nα} fixed. A flowchart
describing how to solve PFET using a nested loop is given in
Figure 6. The inner loop optimizes Vemb, and the outer loop
optimizes {Nα}.

To minimize the total energy with respect to Vemb, one needs
to compute the gradient δEtot/δVemb, which can be evaluated
using an efficient finite difference scheme.30 For a subsystem
not treated by KS-DFT, one needs to obtain the KS potential
for its electron density by inverting the KS equations, in order
to avoid using approximate KEDFs in the calculation of the KS
kinetic energy component in Eint.

8,53−55 Many ways to invert
the KS equations exist, such as suggested by Wu and Yang56

and Zhao, Morrison, and Parr.57

In PFET, Vemb is the minimizer of the total energy. Thus,
there is no longer an obvious connection between δEint/δρα
and Vemb [eq 2], as in DFET (section 2), where each subsystem
electron density is a minimizer of the total energy. In PFET,
any approximation to Eint (such as evaluating Eint within KS-
DFT instead of using the same CW method(s) used for each

subsystem) will cause subsystem densities to no longer globally
minimize the total energy.
Changing the variable from electron density to embedding

potential, Vemb, brings many new exciting possibilities. It
becomes straightforward to enforce all subsystems to share the
same embedding potential, required for the uniqueness of
Vemb.

30 Different subsystems can be treated with different
quantum mechanics methods: Eα[Vemb,Nα] can be evaluated
with a quantum mechanics method appropriate to the physics
of that subsystem. The interaction term Eint also can be
approximated to reduce computational cost while preserving
the correct physics.30 Therefore, PFET opens the door to
seamless, self-consistent, first-principles embedding simulations.
Technically, PFET is a powerful framework that can be used

in conjunction with different computer programs. Each
subsystem can be calculated using any level of theory as long
as a local, external potential can be input and the ground-state
energy and electron density are output. The numerically
expensive calculations are performed independently for each
subsystem (see shaded box in Figure 6) and thus can be
efficiently parallelized. Fractional electron numbers in sub-
systems can be derived from KS-DFT with KS orbitals
fractionally occupied, or from the ensemble DFT approach.45

Since it is the total electron density that determines the entire
system, we can treat fractional electron numbers in subsystems
in whatever way is convenient. We have benchmarked PFET
within pure KS-DFT for molecules and materials.30 We find
excellent agreement with KS-DFT benchmarks in all cases. We
are currently working on practical tests for CW-in-DFT
embedding using PFET, as well as a recently developed time-
dependent PFET.58

5. CONCLUSIONS
A number of fundamental as well as technologically important
phenomena involve processes and states of matter poorly
described by the quantum mechanics workhorse known as
density functional theory (DFT). Refined electronic structure
methods are needed to understand basic mechanisms of, for
example, charge transfer that are key to such contemporary
challenges as efficient electrochemical energy conversion. The
latter is critical to facilitating clean, efficient electricity
generation via fuel cells and likewise generating fuels from
(photo)-electrocatalysis. Conventional DFT approximations fail
to treat charge transfer excitations correctly due to XC
functional limitations. In this Account, we reviewed recent
advances in embedded correlated wavefunction (CW) theory
and how this theory has been used to understand (photo)-
electrochemical reactions at metal surfaces. Embedded CW
theory treats charge transfer and excited states accurately by
properly including exact electron exchange and correlation in a
region of interest, while the extended metal background is
described via periodic DFT, encapsulated in an embedding
potential. We saw that embedded CW theory can properly
describe the first step of the oxygen reduction reaction that
occurs at fuel cell cathodes, namely, charge-transfer-induced O2
dissociation at the metal surface. By contrast, conventional
DFT completely misses quantitative and qualitative features of
the reaction. We also saw that an unusual form of (photo)-
electrocatalysis can be captured by this theory, namely,
plasmon-induced hot electron dissociation of molecules on
gold nanoparticles, by revealing that charge transfer excited
states weaken bonds in impinging molecules so they can more
easily dissociate, even on inert substrates such as gold.

Figure 6. Flowchart for a PFET calculation. The shaded step can be
executed independently for the different subsystems.30 Step 1, an
initial guess for Vemb and the subsystem electron numbers {Nα} is
generated. Step 2, subsystems are solved independently by taking Vemb
as an additional external potential. Subsystem electron densities and
ground state energies are then obtained. Step 3, the gradient δEtot/
δVemb is calculated according to ref 30. Step 4, the convergence of Vemb
is tested. Step 5, If Vemb is converged, {Nα} are updated by
equilibrating chemical potentials among subsystems. Step 6, the
convergence of {Nα} is tested. If the {Nα} are converged, the PFET
calculation is finished. Otherwise we go back to step 1 to reoptimize
Vemb for this new set of {Nα}.
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Thus, density-based embedding of CWs can accurately treat
many interesting phenomena in which a single quantum
mechanical method proves insufficient to tackle the full
problem complexity. The more general potential-functional
embedding, which allows for charge equilibration across
subsystems to achieve full self-consistency, has only been
tested at the pure DFT level thus far. Further developments
aim at self-consistently evaluating the embedding potential to
include the back-action of high-level CW methods on the
environment or multiple subsystems, as well as extending fully
self-consistent embedded CW theory to the time-dependent
domain.
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