1Y,

WIEN

DIPLOMARBEIT

Electron and Hole Wavefunctions in
Andreev Billiards

ausgefiihrt am
Institut fiir Theoretische Physik
der Technischen Universitat Wien

unter der Anleitung von
O.Univ.-Prof. Dipl.-Phys. Dr. Joachim Burgdorfer
und
Univ.Ass. Dipl.-Ing. Dr. Stefan Rotter

durch
Florian Libisch
Dannebergpl. 15/9
1030 Wien

Datum Unterschrift



Contents

1 Introduction

2 Andreev billiards
2.1 Superconductivity .

2.1.1 Ballistic motion . . . . . . . . . . . .. ...,

2.1.2  BCS theory

2.1.3 Bogoliubov-de Gennes equation . . . . . . ... .. ..
2.1.4  Andreev reflection . . . ... ...
2.2 Quantum mechanical solution . . . . . . . ... ... .. ...
221 Model system . . .. .. ... oL oL

2.2.2  Energy levels

2.2.3 Modular recursive Green’s function method . . . . . .
2.2.4 Wavefunctions . . . . . . . . . ... oo
2.3 Semiclassical treatment . . . . . . .. ... L.
2.3.1 Path-Length Distribution . . .. .. .. ... ... ..
2.3.2 Bohr-Sommerfeld approximation . . .. .. ... ...

2.4 Rectangular billiard

2.4.1 State counting function . . . . . . .. ...
2.4.2 Wavefunctions . . . . . . . ... ... L.

2.4.3 Quantization

condition . . . . . . .. ...

2.4.4 Billiard with narrow leads . . . . . . . . . . .. . ...

2.5 Circular billiard . .

2.5.1 Wavefunctions . . . . . . . . . . ...

3 Billiard with soft walls

3.0.2 Quantum mechanical treatment . . . . . .. ... ...

3.0.3 Semiclassical
3.0.4 Results. . .

treatment . . . .. ... .00



4 Magnetic field

4.0.5 Implementation of a magnetic field . . . . ... .. ..

4.0.6 Low magnetic field region
4.0.7 Semiclassical description

4.0.8 High magnetic field region . . . . . . .. ... ... ..

5 Potential barrier at the SN interface
5.0.9 Quantum mechanical treatment . . . . . .. ... ...

6 Summary and Outlook

A Derivation of SN reflection phase

A.1 Clean SN interface . . . . . . . . . . . . ... ...
A.2 Potential barrier at the SN interface . . . . . . . . . . . . ...

B Semiclassical eigenenergies

Acknowledgements

1

35
35
37
38
42

45
45

51

53
23
95

56

61



Chapter 1

Introduction

Ballistic mesoscopic devices in two dimensions have become popular systems
to investigate a wide variety of physical effects, both experimentally [1][2]
as well as theoretically [3][4]. Ballistic in this context means that the mean
free path of an electron is much larger than the size of the so-called quan-
tum dots. In this regime, phase coherent scattering occurs. By combining
GaAs/GaAlAs heterostructures, it is nowadays possible to confine electrons
to a two dimensional electron gas with mean free paths up to 10um [5][6].
The aim of this thesis is to investigate the dynamics when such a quantum
dot is brought in contact with a superconductor.

Superconductivity was discovered by Kamerlingh Onnes in 1911. Per-
forming experiments on mercury, he found that its resistance abruptly drop-
ped to zero below 4.2K. A satisfactory explanation for this phenomenon was
not found before 1957, when Bardeen, Cooper and Schrieffer (BCS) devel-
oped a theory [7], which states that for sufficiently low temperatures, elec-
trons form bound pairs, so called Cooper pairs. These pairs form the so-called
BCS ground state, which has a slightly lower energy than the normal Fermi
sphere. The attractive force between the two equally charged electrons is due
to electron-phonon coupling.

One of the most prominent features of superconductivity are the vanishing
of resistance and the Meissner Ochsenfeld effect [8]. What we are interested
in in this thesis is the effect a superconductor has on a normal conducting
quantum dot when brought into contact with it. A ballistic normal metal cou-
pled to a superconductor is commonly called an Andreev billiard [9][10][11].
Electron and hole excitation, which are decoupled in a normal conducting
ballistic metal, become connected through the superconductor. The dynam-
ics of the quantum dot change dramatically, because a new class of periodic
orbits in the billiard is created. The reason for this is that an electron hitting
the surface of a superconductor will excite another electron to form a Cooper



pair. This pair continues its path into the superconductor, leaving back a
hole excitation. This phenomenon is called Andreev reflection. In case of
sufficiently small excitations and the absence of diffractive effects, the hole
almost exactly retraces the path of the electron, thereby creating a periodic
orbit in the Andreev billiard.

A characteristic quantity in an Andreev billiard is the state counting func-
tion (i.e. the integrated density of states), which has been studied by many
authors [12][13][14]. The density of states in an Andreev billiard has singu-
larities, which results in a distinct cusps structur in the counting function [9].
As will be shown, these cusps are due to the retracing property of Andreev
orbits and vanish as soon as retracing is perturbed.

Using the retracing properties of Andreev reflection, it is possible to de-
scribe very accurately the density of states of a closed Andreev billiard with
a simple semiclassical formula [15]. We will try to explain why the semi-
classical description of Andreev billiards is so simple and, at the same time,
correct.

The outline of this thesis is as follows: First, we will give an introduction
to the physics of Andreev billiards, and the methods used to simulate their
dynamics. We present the conventional Bohr-Sommerfeld description of an
Andreev billiard, and compare the results to the quantum mechanical calcu-
lations. We do this by not only looking at the state counting function, but
at the quantum mechanical wavefunctions of these states themselves. The
modular recursive Green’s function method [16] we use allows us to calculate
the wavefunctions of Andreev states in the normal and superconducting part
of the Andreev billiard with high accuracy. To our knowledge, this has not
been done before.

By looking at the limit of a narrow superconducting lead connected to
comparatively large cavities, we show that for these systems retracing does
not take place. This does not depend on the mean free path or the cleanness
of the SN interface, but is a consequence of the long trajectories arising for
small leads.

To investigate this more thoroughly, we analyze the limits of the retracing
approximation. To do this, we introduce several effects to perturb the ideal
retracing conditions: A magnetic field, soft billiard walls and a potential
barrier at the SN interface. We attempt to give a semiclassical approach for
these cases, and show its limitations.

We finally analyze how the wavefunctions and the counting function
change under the influence of these perturbations. As will be shown, the
ratio of hole displacement and Fermi wavelength is a good indicator for the
validity of the retracing approximation.



Chapter 2
Andreev billiards

2.1 Superconductivity

2.1.1 Ballistic motion

As mentioned in the introduction, we attempt to describe a ballistic scatter-
ing system which consists of a normal and a superconducting region. For a
realistic device, this means that the mean free path of the electron is much
larger than the system size. For our theoretical description, we assume in-
elastic scattering sources to be completely absent.

We start out by taking a look at the properties of a current carrying
electron in a normal metal. Such a valence electron is subject to a periodic
potential created by the crystal lattice. In general, its dispersion relation will
be determined by the crystal band structure. Near a critical point k., the
first derivative of the dispersion relation F/(k) vanishes. Assuming a simple
cubic lattice, we can Taylor expand the dispersion relation around k. [17]:

10?E(k)
2 Ok?
(k — k.)*. (2.1)
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The resulting dispersion relation is shown in Figure (2.2,a). Introducing
the effective mass meg, we note that it is possible to describe the dynamics of
an electron moving through the periodic potential of a lattice near the Fermi
edge with a free electron dispersion relation.

At very low temperatures, the valence electrons of the solid will form a
Fermi sea as shown in Figure (2.1, a). All states up to the Fermi energy Er
are occupied by electrons due to the Pauli principle. If an electron is excited



by an energy ¢, it moves to a higher energy, and leaves back an unoccupied
state below the Fermi edge, a hole, as shown in Figure (2.1, b).

Imagine an electric field applied to the electrons in Figure (2.1, a). The
excited electron can move under the influence of the field, but the other ones
cannot, because their nearest states are already occupied. Only the electron
next to the hole can move into the position of the hole. If it moves to the
left, the hole essentially moves to the right. Thereby the hole behaves like a
particle with positive charge under the influence of the field.

The dispersion relation of a hole is shown in Figure (2.2,a) as a dashed
line. We see that the sign of the effective mass defined in Equation (2.1) is
inverted. Thus, a hole does not only have opposite charge compared to the
electron, but it also carries opposite effective mass.

a) b)
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Figure 2.1: Schematic picture of a Fermi sea of occupied electron states, one
electron excitation at the energy Er 4 €1 and one free position at the energy
Ep — ey (a). In the quasiparticle picture (b), there is an electron excitation
with energy €1 and a hole excitation with energy €,.

For convenience, we use rescaled units throughout this work. We set the
quantities |e| = meg = A = 1 and dimensionless.

2.1.2 BCS theory

As mentioned in the introduction, the main breakthrough in explaining su-
perconductivity was the concept of a Cooper pair. Under special conditions,
electron-phonon interaction gives rise to an attractive force between two elec-
trons. The exact treatment of electron-phonon interaction is quite compli-
cated. Therefore, several approximations are made to simplify the theoretical
description of superconductors.

The most prominent approximation certainly constitutes BCS theory by
Bardeen, Cooper and Schrieffer [7], which describes the electron-electron cou-
pling by introducing a constant weakly attractive force —Vpcg for electrons
near the Fermi edge. This crude approximation is sufficient to succesfully
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Figure 2.2: Schematic plot of excitation energies E vs wavenumber k along
an axis passing through the center of the Fermi sphere for normal conducting
metal (N, a) and superconductor (S, b) [18][19]. In the normal conductor,
the hole excitation is shown as dashed line. The shaded areas are enlarged in
Figure (2.3).

describe many aspects of superconductivity, like vanishing resistance and the
Meissner-Ochsenfeld effect.

The effect of Vpcg is to create an energy gap around the Fermi energy in
the dispersion relation, as shown in Figure (2.2, b). The size of this gap is
2A. A = |Ale is called the pair potential of the superconductor. It is the
energy two electrons gain by forming a Cooper pair.

In the superconductor, there is no available state in the gap [Fr—A, Ep+
A] due to Cooper pair formation, as shown in Figure (2.2,b). Thus, inelastic
scattering is not possible as long as the excitation energy lies below 2A. As a
consequence, resistance drops to zero as long as thermal excitations lie below
the gap, i.e. kgT < A. The solid becomes superconducting.

The spatial dependence of A is determined by [20]:

A(x) = —Vaes(x) Y v (x)u(x)(1 — 2f(¢)) (2.2)

e >0

where the sum includes all stats with positive €. f(¢) is the Fermi function, u
and v denote the electron and hole wavefunctions inside the superconductor.

Inside a superconductor, at some distance from the surface, Vpcg is con-
stant and A assumes its bulk value |Ag|e®. At the surface of the supercon-
ductor Vpes(x) drops abruptly to zero. Then, the exact shape of A has to
be determined using Equation (2.2).



Equation (2.2) is a self consistency relation: The exact value of A depends
on the wavefunctions u and v inside the superconductor. These wavefunc-
tions, in turn, depend on A. To avoid the complications of solving (2.2), we
assume that the length scale at which A drops from its bulk value to zero is
much smaller than the system size. Under these assumption, a step function
model for A is plausible [20]

A = |Ao|e0(x — zgx) (2.3)

where xgx is the is the position of the superconductor-normal conductor
(SN) interface.

2.1.3 Bogoliubov-de Gennes equation

An elegant way to describe a superconductor-normal conductor system is the
Bogoliubov-de Gennes equation. It consists of a linear expansion of the exact
equations of motions of electron and hole excitations. They are coupled by
the pair potential A introduced by the BCS theory. Writing the Schrédinger
equations for electron and hole excitation as one matrix equation, we obtain
the Bogoliubov-de Gennes equation [21]

(& ) G ) ==(a8): 2.4)

Hj is the Hamiltonian of an electron in a potential with respect to the Fermi

energy:
1

2’rneﬂ”

H, p’ +V(x) - Er. (2.5)
By substracting Er from Hy, ¢ is the excitation energy of an electron (hole)
over (below) the Fermi energy Er. V(x) is an additional confining potential.

Note that the off-diagonal term in the matrix Hamiltonian in Equation
(2.4) represents the coupling between electron and hole. The electron and
hole wavefunctions u and v are coupled to each other by the pair potential
A in the superconductor, and because of Equation (2.3) decoupled in the
normal conductor. In such a way, the superconductor connects electron and
hole dynamics of the normal conducting quantum dot.

2.1.4 Andreev reflection

The mechanism of Andreev reflection was explained by Andreev in 1964 [22].
It occurs when an electron moving inside the normal conducting quantum



Figure 2.3: Schematic diagram of energy E vs wavenumber k at an interface
between a normal conducting metal (N) and a superconductor (S), enlarged
near the Fermi edge (the shaded areas in Figure (2.2)) [18]. Open circles
denote holes, closed circles electrons. The small triangles indicate the direc-
tions of motion. An electron hitting the superconductor below the gap (0)
with an excitation energy e1 < A will be reflected back (as there is no state
in the superconductor to accomodate it) either as electron (1), or as hole (2).
If the energy of the electron e5 > A lies above the gap (3), it can penetrate
into the superconductor by normal (4) or Andreev (5) transmission.

dot with a small excitation energy € above the Fermi energy Er hits a super-
conductor - normal conductor (SN) boundary. Small in this context means
e < A, as depicted in Figure (2.3). By exciting another electron, the electron
forms a Cooper pair which continues into the superconductor. This second
electron leaves a hole excitation with energy ¢ below the Fermi energy as
shown in Figure (2.4). The hole is reflected back into the normal conductor,
due to momentum conservation. If the electron energy is sufficiently close
to the gap, the dispersion relation can be linearized close to the Fermi level.
Then, the reflected hole has the opposite velocity of the electron.

N N
a) I b) S
Figure 2.4: a Normal reflection by an insulator (I) versus b Andreev reflection
by a superconductor (S) of an electron with a small excitation energy € above
the Fermi energy Er. Andreev reflection conserves momentum, as the hole

has negative effective mass. The missing charge of 2e continues into the
superconductor as a Cooper pair.[20]
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Figure 2.5: Rectangular Andreev billiard.

If the pair potential A of the superconductor and the excitation energy
e < A, is small compared to the Fermi energy, A < Ef, the energy difference
between electron and hole is minimal. In this case, the hole retraces the path
of the electron, until it hits the SN interface again. In such a way, a periodic
orbit is formed. Any trajectory connecting the SN interface with itself will
create such a periodic orbit. This feature has a major impact on the dynamics
of an Andreev billiard.

To calculate the probability for Andreev reflection, we consider the above
situation quantitatively. We make the ansatz of an incoming electron plane
wave hitting the SN boundary. Making an ansatz of a reflected electron and
hole wave, one can derive the corresponding reflection amplitudes [18]. As
we consider a bound system, i.e. ¢ < A, with no barrier at the SN interface,
the probability for Andreev reflection is 1. For our system, this probability
does not depend on the angle of the incoming wave [23]. By looking at the
phase of the reflection coefficient (see Appendix A.1) of the hole, one can
derive the phase difference between electron and emitted hole:

d¢ ~ —arccos (%) (2.6)

We will need this result for the semiclassical description of Andreev reflection.

2.2 Quantum mechanical solution

In the following, we give a short description of the methods used to calculate
the energy levels and wavefunctions presented in this work.

2.2.1 Model system

We consider a bound state problem, i.e. we want to find eigenenergies ¢ < A
of the Bogoliubov-de Gennes (B-dG) Equation (2.4). If not stated otherwise,
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we choose a pair potential A = 0.02Er, which makes the maximal energy
difference between electron and hole sufficiently small to allow for retracing.
Our model system is a rectangular cavity with width D and length L as
displayed in Figure (2.5). Attached on one side is a waveguide of width W and
infinite length. The waveguide becomes superconducting after a distance d,
which is small compared to the size of the system. We need a small length of
normal conducting lead to expand the wavefunction of the normal conducting
region in eigenstates of the lead near the SN interface. Technically, we assume
that d is very small compared to the size of the system. The SN interface,
i.e. the contact between normal conductor and superconductor, is located at
xgn = 0 to simplify calculations. We assume hard-wall boundary conditions,
i.e. V(x,y) is zero inside the dot and the lead and infinitely high elsewhere.

This system is described by the B-dG equation (2.4) where A is the pair
potential, chosen to be A = ¢/ inside the superconducting region (S) and
A = 0 inside the normal one (V). As we only consider one superconducting
lead in this work, we can set the phase ¢ = 0 [9]. The reason for this is
that a constant ¢ only changes the overall phase of the electron and hole
wavefunctions, which is without physical meaning.

2.2.2 Energy levels

At the SN interface, the solutions of (2.4) in the normal conducting part of
the lead can be written as a superposition of plane waves describing left- and
rightmoving electrons (with energy Fr+¢) and holes (with energy EFr—e¢). In
the superconducting part of the lead, the general solution is an exponentially
decaying wave [9]. Electron and hole are coupled in the superconductor and
separate in the normal conductor. The y-dependent part of the wavefunctions
is described by x,(y) both in the normal- and superconducting lead. In
the absence of a magnetic field, y,(y) o sin(nmy/W) where the integer n
denotes the index of the vertical quantization. The normalization factor is
chosen such that the wavefunctions are flux-normalized. We will consider
what changes if a magnetic field is switched on in Chapter 4.

Using the abbreviation 7 = A/(e + iv/A? — £2) we have
iky T - —ikyx 1
on(0 = Sonal) | (e + e ) () (2.7

- (c;ne“gzm - c,;ne’ikﬁm) ( (1) )}
Q/JS<X) _ an<y> |:bn€ian < Y ) _'_b:eiqifzv ( ,}/1* ):| (28>



We want ¢y and 1g to be eigenfunctions of the B-dG equation (2.4) in
the normal and superconducting region. From this it follows that

et = \/2(EF +e)— k2, (2.9)
¢ = \2ABeFIVAT =) k2, (2.10)

Note that the imaginary part of +¢* will always be negative, resulting in an
evanescent suppression of the wavefunctions in the superconducting region.
However, in contrast to a normal conducting and classically forbidden region,
the wavefunction still oscillates, as the wavenumber is complex, not purely
imaginary.

The scattering matrix of the normal conducting open structure connects
the coefficient vectors ¢ and c;:

c, =SE)c o =S (—e)e;, (2.11)

Furthermore, the wavefunctions must fullfill matching conditions at the SN
interface:

0ehs (T, Y)|z=0 = OuUN(T,Y)|2=0 (2.13)

The transverse lead eigenfunctions y,(y) are linearly independent and ful-
fill an orthogonality relation. By inserting (2.7) and (2.8) into (2.11-2.13),
multiplying with x,,(y) and integrating over vy, it is thus possible to rewrite
the matching conditions as linearly independent equations. Assuming a total
number N of open modes in the lead, this gives us 6N equations for the 6 N
coefficients cei’h and bF (N for each of the two (2.11) and 4N from electron
and hole part of both (2.12) and (2.13)). After inserting Equation (2.11) to
eliminate the 2N variables ¢, and ¢}, we can write the above equations as a
homogeneous matrix equation of dimension 4N x 4N

1+ S(e) 0 —Yl =l cl
0 1+ 5*(—¢) -1 -1 a | _q
iK(1 - S(e)) 0 7.Q° —imQ" Ao
0 iKM(S* (=) — 1) iQ°  —iQh b
(2.14)

K®" and Q" are the diagonal matrices of the wavevectors in the normal and
superconducting region.

In order for an Andreev level to exist, we have to find a real ¢ so that the
determinant of the matrix in Equation (2.14) becomes zero. As the matrix

10



is complex and non-Hermitian, we used a singular value decomposition to
determine the ¢ for which it becomes singular. We can write any quadratic
matrix A as

A=UxV?  UU=VIV=1  ¥=diag(o;), o €R". (2.15)

The positive definite o; are the singular values of the matrix. If, and only
if, one of them is zero, the matrix is singular. Plotting the smallest o; as
a function of €, we find distinct zeros representing allowed eigenvalues ¢ of
(2.4).

It is worth noting that the only information about the shape of the cavity
in Equation (2.14) enters via the scattering matrix S(¢) of the open normal
conducting system.

2.2.3 Modular recursive Green’s function method

We will use the modular recursive Green’s function method [16],[24] to cal-
culate the scattering matrix S(¢) and the wave functions inside the normal
conducting rectangular quantum dot. It is important to understand that the
scattering matrix is that of an open, normal conducting system, i.e. the lead
in Figure (2.5) is replaced by a normal conducting one. A short description
of how this method is applicable to our problem is given in the following.

N
Azx
Ay 1
1 M

Figure 2.6: Discretization grid on rectangular quantum dot

To solve the scattering problem through the rectangular quantum dot
numerically, we use a tight binding grid in the continuum limit. To this end,
we use a tight binding Hamiltonian

H:ZEJ 17) Ul +Zvj,k 17 (K- (2.16)

The site energy €; and the hopping potential V; ; representing nearest-neighbor
coupling are chosen such that the Schrodinger equation on the grid converges

11



towards the continuum equation in the limit of an infinitely fine grid [24].
The grid is shown in Figure (2.6). The spacing between grid points is Ax
and Ay, there are M x N gridpoints in the rectangle. The grid has to be
fine enough to allow for

1 — cos(kpAx) ~ %(k:FAx)Z (2.17)

in order to get the free particle dispersion relation F = k*/2 from the dis-
persion relation on the finite sized grid, £ = 1 — cos(kAz).

One main idea of the modular recursive Green’s function method is to
separate the tight-binding grid into separable substructures, so called mod-
ules. In our case, the scattering geometry is composed of the rectangle itself
and one semi-infinite wave guide. The Green’s function of the rectangle is
calculated by an eigenfunction expansion of the eigenfunctions of (2.16),

Pom) (X) Py (X')
E—E, +in

Go(x,x E) =) (2.18)
The Green’s functions of the different modules are then put together by a
Dyson equation

G =Gy +GyVG (2.19)

to assemble the Green’s function of the complete structure.

The scattering wave functions ¢} inside the cavity can now be expressed
by projecting the retarded Green’s function of the structure onto the incom-
ing wave [25],

w
) = —Fam / dy oo X, B )hemos  (2.20)

2.2.4 Wavefunctions

With the help of Equation (2.20), we can calculate the wavefunctions inside
the normal conductor using the Green’s function. After determining an e
by (2.14), we need to find a nontrivial eigenvector to the eigenvalue zero of
the singular matrix. Numerically, this is not a simple problem, as the usual
approaches for solving linear equation, e.g. matrix inversions, fail. We use the
singular value decomposition (2.15). As VT is a unitary matrix, its columns
form an orthonormalized complete basis. The column of V1 corresponding
to o0 = 0 contains the normalized eigenvector we are looking for. Thus, we
can write the electron wavefunction in the normal conductor as

%%
un(x) ==Y Vkacl, / dy’ G*(x, %, E)xa(y') o, (2.21)
n 0
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and for the hole
1%
un(x) ==Y v kﬁcf]n/ dy’ G*(x, %", E)xu(y") lx=o0- (2.22)
- 0

To calculate the exponential tail in the superconducting region, we use
Equation (2.8) with coefficients bX. Note that while the wavefunction in the
superconductor is given as a sum of analytically determined functions! in the
continuum limit, the wavefunction in the normal conductor is determined
numerically on a tight binding grid, as analytic solutions for a non-vanishing
difference between the width D of the rectangular cavity and the width W
of the superconducting lead do not exist. In spite of these two very different
approaches, we were able to fulfill the matching conditions (2.12, 2.13) with
great accuracy. This shows that the grid was fine enough for the continuum
limit.

Finally, the wavefunctions are normalized according to

// (luf* +Jof*) dx =1 (2.23)

where the integral extends over the normal conducting region and the super-
conducting lead. The probability to find the excitation either as an electron
or as a hole anywhere is one. Figure (2.7) shows an example of the calculated
wavefunctions.

Gy
LTI

Figure 2.7: Absolute square of the electron (left, |u|?) and hole (right, |v?|)
wavefunctions calculated for a quadratic Andreev billiard ( linear dimension
D =1, attached to a lead with width W = 0.8). kp = n,*7 /W = 21.5%7/0.8,
where [n,| is the number of open modes in the lead. Shown are false color
plots, black areas represent zero amplitude, red the highest. The state shown
has an excitation energy of € = 0.558 A

lalthough the coefficients have to be determined numerically
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2.3 Semiclassical treatment

One interesting feature of Andreev billiards is that already an elementary
semiclassical description based on the Bohr-Sommerfeld quantization rule
for periodic orbits leads to very accurate predictions of e.g. the state count-
ing function [26]. Quite in contrast, great effort must be taken to find a
reasonably accurate semiclassical description of normal conducting systems
were no superconducting walls are present, by including e.g. the introduction
of diffractive effects [27][28]. The standard approximation made to describe
Andreev billiards semiclassically is to assume exact retracing of electron and
hole trajectories [15], [20]. With this approach and [26] we will derive a semi-
classical expression for the state counting function N(e), i.e. the number of
energylevels lying below the energy .

2.3.1 Path-Length Distribution

For a semiclassical treatment of Andreev billiards we need the periodic or-
bit length distribution P(s), where s denotes the length of the electron (or
hole) trajectory. Because of the creation of periodic orbits by Andreev reflec-
tion, P(s) corresponds to the classical pathlength distribution of the normal
conducting cavity, i.e. the probability that classical electrons entering the
cavity with an angular distribution of cos(#) exit after a pathlength of s. It
is normalized to one: [ P(s)ds = 1.

Any trajectory connecting the SN interface with itself will automatically
represent a closed periodic orbit due to retracing as shown in Figure (2.8).
Thus, there is a continuum of periodic orbits formed by Andreev reflection.
We do not have to search for trajectories where the electron after transversing
the cavity exactly returns to the place it started from.

In the case of a rectangular cavity with one entire side replaced by a
superconductor, there is an analytic expression for P(s) [9]. Consider the
extended zone scheme as shown in Figure (2.8,b). Every path leaving the
entrance with an angle 9 has a length s = 2L/cos?. As a simple approx-
imation, we assume that the angular distribution of the different paths is
described classically by a cosine. This is a good approximation for more
than 10 open modes in the lead?.

9)? 4d?
cos(v) ds= ————ds

2More complicated calculations using Fraunhofer diffraction lead to different angular
distributions for the different transverse modes [29]. A sum over all open modes reproduces
the cosine distribution.

P(19)dY = cos(9)dd = cos(9)

14



Figure 2.8: a) Quadratic (D = L) quantum dot with one side replaced by
a superconductor (W = D). The trajectory shown forms a closed Andreev
loop containing two Andreev reflections. b) shows the same trajectory in the
extended zone scheme (scaled down by a factor of two). By arranging multiple
billiards next to each other, any trajectory can be drawn as straight line. The
angle 0 can be used to express the length s of the trajectory: s = 2L/ cos(¥}).

For a more general shape of the cavity, numerical Monte Carlo calcula-
tions using Equation (2.32) were used to determine P(s). Typically 1.500.000
trajectories with an angular distribution of cos(f) were employed. Figure
(2.9) shows the numerical results for four different lead widths.
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Figure 2.9: Numerically calculated P(s) for different lead widths as shown in
the insets in a 1 X 1 rectangle. The peak at | = 2 represents paths exiting the
cavity after being reflected at the right wall once. The smaller the lead, the
more complicated the structure of P(s).
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2.3.2 Bohr-Sommerfeld approximation

The Bohr-Sommerfeld quantization rule is a very basic quantization scheme
used to describe periodic motion in the early days of quantum mechanics
[30]. As periodic orbits formed by the hole retracing the path of the electron
play the essential role in the dynamics of Andreev billiards, we can describe
these dynamics using the Bohr-Sommerfeld approximation.

We want to derive a semiclassical prediction for the state counting func-
tion. To this end, we start out from the semiclassical density of states [26]

pps(e) = N/OOO ds P(s) ) 6(z—ea(s)) (2.24)

where ¢,(s) is chosen such that the energy level fulfils the Bohr-Sommerfeld
quantization condition for the action S:

S=5.—-9,= /pedqe — /phdqh =2m(n + %) (2.25)

where 1 is the Maslov index [31], which describes phase contributions due to
classical turning points, e.g. reflections at the SN interface or the hard wall
boundary.

For hard walls at the border of the dot and zero potential inside, the line
integral (2.25) gives the action, i.e. the length of the trajectory s times the
wavenumber k. The action of the hole excitation contributes with a negative
sign. We consider a periodic orbit, a trajectory of length s connecting the
superconducting lead with itself.

€ € 2e
S_S(ke_kh)_SkF(MIJFE_F_HI_E—F)Nsk:_p' (2.26)

In the last step, we used a Taylor expansion of first order of the square
root. The difference in energies between electron and hole is 2. The main
part of the phase the electron accumulates while transversing the billiard is
subtracted out again by the hole retracing it. Thus, the action of a periodic
orbit varies much slower with the length of s than for a normal conducting
system. On the other hand, this argument relies on two large quantities S,
and S, nearly cancelling out each other and thereby giving a contribution of
the order ¢/kp, which cannot be considered large compared to i. However,
a semiclassical approximation consists of neglecting terms of order A. From
this point of view, it is surprising that a semiclassical description of Andreev
billiards relying on periodic orbits works as well as it does.
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Additionally, there is a phase shift of —2 - arccos(%) due to the two An-
dreev reflections as we show in Appendix (A.1). We do not need to consider
other reflections at the normal conducting hard wall boundary each con-
tributing a phase jump of 7, because the sum of both the electron and the
hole reflection add up to a total contribution of 2n7w, where the integer n
denotes the number of reflections. A phase shift of integer multiplies of 27
is irrelevant as the phase is only defined modulo 27. The complete phase
accumulated in one closed trajectory is thus

2
o= kiFS -2 arccos(Z).
According to Bohr-Sommerfeld, the above phase has to be equal to 2nm,
which gives

(2.27)

Sp(€) — (mr + arccos (%)) %

Inserting this expression into Equation (2.24) we obtain

= 0. (2.28)

ps(e) = N/OOO ds P(s) 25 (s — s,(€)) |0=8n(2)|. (2.29)

The derivative of s,(g) appears because of the familiar formula 6(f(x)) =
> 0(x—=x;)/|f'(x;)]. The sum over i can be left out because s,,(¢) is strictly
monotonic in € and thus only has one root.

To compare the results of the semiclassical approximation with quan-
tum mechanical calculations, it is useful to consider the semiclassical state
counting function

Npg(e) = /Oede’pgg(s’) (2.30)

_ N/Ooods P(s)Z/OEde’ 35— 0()) 105a()] . (2.31)

d(e—en)

Using Equation (2.28) one can perform the integral over ¢’ using the
delta function in the following way: The integral over ¢’ in (2.31) equals
the number of roots of s,(e). s,(¢’) is a strictly monotonically decreasing
smooth function in e. From this it follows that, for a given &', s,,(¢’) defined
in Equation (2.28) is the smallest s for which the delta function in (2.31) can
contribute. Furthermore, for fixed s > s,(¢), there is only one root and the
integral over ¢’ gives 1.

oo

NBS:MZ/
n=0""%

n(€

P(s)ds. (2.32)
)

17



One important point to notice in Equation (2.32) is that the exact shape of
the paths connecting the superconductor with itself does not enter anywhere.
As discussed above, the number of reflections at the normal conducting walls
are irrelevant. The entire information of the specific geometry enters via
P(s).

2.4 Rectangular billiard

We will now use the methods described in the previous two chapters to look
more closely at the dynamics of a rectangular Andreev billiard.

2.4.1 State counting function

By inspection of Equation (2.32) and Figure (2.9), we can already get an idea
about how the semiclassical approximation for the state counting function
will look like. Let us first consider the simplest case of W = 1. P(s) then
has one singularity at s = 2L, coming from orbits that reflect only once at
the right side of the rectangle. We know that N(0) = 0. As ¢ increases, sg(¢)
decreases, thereby increasing N(e) faster as P(so(c)) gets larger. As soon
as so reaches 2L, the counting function stops increasing, producing a cusp.
This continues for increasing ¢, producing cusps whenever

2Le = (mr + arccos (%)) kp. (2.33)

Figure (2.10) shows the counting function for four different lead widths.
The agreement between the semiclassical prediction and our numerical cal-
culations is very good. The cusp structure we expect is indeed visible, and
the position of the cusps is predicted correctly by the Bohr-Sommerfeld ap-
proximation. The eigenenergies of a closed quadratic cavity without super-
conducting lead are marked in the figure too. There is only one twofold
degenerate eigenstate in the energy range [Ep, Er + A], in comparison to
about 25 Andreev states. This relatively high number of states is due to the
new periodic orbits created by retracing.

For smaller W, P(s) gets more complicated and acquires more peaks, as
shown in Figure (2.9). Because of this, the cusp structure becomes washed
out and less distinct as the lead becomes narrower, as shown in Figure (2.10).
Due to these additional peaks in P(s), additional cusps start to form: For
W = 0.8, P(s) shows one distinct peak at s = 4L. The corresponding cusp
forms about halfway between zero and the main cusp and is marked with an
arrow in the figure. For a lead width of W = 0.6, the distinct cusp structure
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is already quite washed out. We will discuss what happens for still narrower
leads in the next chapter.

N(g) 0 0.2 04 06 0.8 0.2 04 06 0.8 1
. T T T T B T T T T 30
ol We09s ] weos ] o
r
| / I -1 20
15 / rJ \H 115
O B Jf T \J/j';f = ].0
5 B JA*:E N _Hrj = 5
0 — T T T T T I 0
30 - W=0.725 T w=06 140
— — - 30
20 / -

5 A B N < 20

10 " = .
/ - 4 10
o | | rf(/j | | | 0

0
0 02 04 06 08 ¢/A 02 04 06 08 1

Figure 2.10: Quantum mechanical state counting function (red line) and
semiclassical prediction (green dashed line) for the state counting function
N(g). Shown are the results for four different lead widths W, a quadratic
cavity of unit size, krp = 20.517 /W, A = 0.02Er. For W = 0.95, the eigenen-
ergies of the rectangular closed normal conducting billiard are marked with
blue crosses. For W < 0.8, one can see the formation of a second cusp
(marked with an arrow) stemming from paths with length 4. Figure (2.11)
shows the electron and hole wavefunctions at the cusps marked by I and I1.

2.4.2 Wavefunctions

Figure (2.11) shows examples of the corresponding wavefunctions for W =
0.8. The eigenstates corresponding to the two cusps marked by I and I in
Figure (2.10) are shown. From the considerations in the previous section, we
expect orbits of length s = 4 in the pictures marked a and b taken at cusp [
and s = 2 in the pictures marked ¢, d and e taken at cusp I1.

We can indeed see the localization of the wavefunction around the semi-
classical trajectories very clearly in Figure (2.11). The path lengths ex-
pected by a semiclassical analysis are correct. From this we learn that the
Bohr Sommerfeld approximation not only gives a very good prediction for
the state counting function, but that the shape of the quantum mechanical
eigenfunctions indeed corresponds to the expected semiclassical paths.
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Figure 2.11: Electron and hole wavefunctions of the states corresponding
to Figure (2.10) for W = 0.8. FEnergies € are (0.33, 0.355, 0.563, 0.505,
0.566)A (a-e). The corresponding semiclassical periodic orbits are shown in
the insets: a and b show periodic orbits of length 4, forming part of the first
small cusp (I in Figure (2.10)). ¢, d and e represent orbits of length 2,
contributing to the main cusp marked I1 in Figure (2.10).

————

2.4.3 Quantization condition

By looking more closely at the wavefunctions ¢ — e in Figure (2.11), one
can see that as the eigenstate energies increase, the transverse quantization
decreases from mode 3 in (¢) to 1 in (e). This is true for the hole too, though
its energy is lower in e than in ¢. Wavefunction e corresponding to the highest
eigenenergy located at the cusp has a transverse quantum number of 1.

In order to better understand this behaviour, let us go back to the simple
case of W = D. Quantum mechanics tells us that in the superconductor and
the normal conductor the transverse component of the wavenumber will be

quantized
_mm

Xn(y) = sin (kyny) , kym = - (2.34)
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We use the BS quantization rule derived above, making use of the fact that
s = 2L/ cos(f) for W = 1, as shown in Figure (2.8). Writing cos(f) =~

\/1 — (kym/kr)*, we arrive at

2Le = (mr + arccos (%)) k% — (kym)?. (2.35)
This is a transcendent equation for e(n,m), which allows us to approxi-
mately calculate energy levels for W=1. The accuracy of these eigenenergies
can greatly be improved by treating the electron and hole contribution to s
seperately, as shown in Appendix B.

‘ n ‘ m H Enm (QM) ‘ enm (BS) (2.35) ‘ Enm (B-5) ‘ Error of (B-5) ‘
1115 0.931 0.98 0.939 0.8%
01 0.747 0.75 0.746 0.1%
01 2 0.746 0.74 0.744 0.2%
0 3 0.745 0.74 0.741 0.5%
0] 4 0.736 0.74 0.736 0%
0O 5 0.727 0.73 0.731 0.5%
0 6 0.726 0.72 0.722 0.5%
07 0.708 0.71 0.712 0.6%
0] 8 0.704 0.70 0.700 0.6%
019 0.679 0.68 0.685 0.9%
0110 0.658 0.66 0.665 1%
011 0.633 0.64 0.639 0.9%
0112 0.593 0.60 0.604 1.8%
0113 0.555 0.56 0.552 0.5%
0] 14 0.461 0.48 0.474 2.8%
0115 0.303 0.35 0.321 6%

Figure 2.12: The ezact quantum mechanical eigenenergies (in units €/A)
in an Andreev billiard with krp = 1551x, W = L = D = 1. The first
two columns show the quantum numbers used in Equation (2.35). The third
column gives the solutions to the quantum mechanical eigenvalue problem
(2.4) for this geometry. The fourth column gives the eigenenergies of the
same system calculated using (2.35). As shown in appendiz B, the accuracy
of this equation can be improved (fifth column). The last column shows the
relative error made by (B-5) with respect to the exact values.

Table (2.12) shows the numerical results, along with the correct quantum
mechanical eigenenergies. The error of the prediciton is also shown in the
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table. Considering that we do a semiclassical analysis, it is quite small. The
clear advantage of (2.35) over the quantum mechanical calculation is that it
still contains the two quantum numbers n, m, which give information about
the shape of the wavefunction, i.e. the number of transverse maxima.

Equation (2.35) is sufficiently accurate as to give us an idea of the distri-
bution of the energy eigenvalues. For fixed n and high m, the energy levels
are widely spaced, as can be seen in Table (2.12). As m gets lower, the
distance between adjacent energy levels shrinks until we reach m = 1 at
e = 0.746A. For one fixed value of n, the number of states in one cusp is
equal to the number of open modes in the cavity. We notice that the cusp
contains states with low transverse quantum number m. As can well be seen
in Figure (2.11), this general behaviour is still true for W < 1.

2.4.4 Billiard with narrow leads

If the superconducting lead attached to the normal-conducting rectangular
cavity becomes very narrow, the classical pathlength distribution drops off
more slowly, as shown in Figure (2.9). Longer paths must be included to cor-
rectly describe the system semiclassically. However, if the paths get longer,
the approximation made by assuming perfect retracing is no longer valid.
In other words: If the lead becomes too narrow, our previously employed
semiclassical description breaks down.

Our aim is to find an indicator of how justified the retracing approxi-
mation is for a given lead width. Consider a trajectory connecting the SN
interface with itself. The electron starts an Andreev loop at the SN interface,
moves through the cavity, is Andreev reflected and then moves on as a hole.
As the hole only approximately retraces the path of the electron, the hole
will not hit the interface exactly at the position the electron left it, but a
distance dy away. In order for dynamics to be influenced by this, dy must
be of the order of the de Broglie wavelength of the electron. If dy is smaller
than Ap, the electron “does not see” that retracing is imperfect.

How large is dy for a given trajectory? After an electron with k? = k§7e+l€§
hits the SN interface, it is Andreev reflected as a hole with new k"> = k2, +k;.
The wavenumber in y-direction is conserved. Using the wavenumbers to
represent the angle of the trajectories, we get

o = (Sin(eh) B Sin(@e)) - Sky <\/2(Elp — 5) - \/Q(Elp + 6))
sk, €
i Br’ (2.36)
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Inserting ¢ & A/2 = 0.01 EF, as is the case for our model system, we finally

arrive at
dy sy

Ar 2000
where n, equals the number of open modes in the lead, which is 15 in the
following discussion. For wide leads, dy/Ar quantity is much smaller than 1,
as a result of which retracing is in this case a good approximation. In the
case of W=0.5, however, s ~ 6 and dy/\p =~ 1.

To prove the validity of the above argument, we compare quantum me-
chanical and semiclassical results on a more quantitative level. We look at
the root mean square of the difference between them:

(2.37)

1 A
SN — \/K/ de | Nis(2) — Now(2)[2. (2.38)
0
Nqu is the staircase function of the quantum mechanical eigenenergies
Nou(e) = (e — &) (2.39)

Figure (2.13) shows JN defined in Equation (2.38) as a function of the
leadwidth. As can be seen, the error generally increases with decreasing lead
width. As soon as the leadwidth W reaches about one fifth of the width of
the cavity D, W = 0.2D, semiclassical approximations relying on retracing
break down. They predict a nearly linear N(g) without any discernable cusp
structure. Quantum mechanical calculations on the other hand show a much
lower irregular N (g), because retracing is violated and many Andreev states
cease to exist. This is discussed more thouroughly in Chapter 4, Figure
(4.10).

In general, we can expect the agreement between the semiclassical ap-
proximation and quantum mechanics to be better with wider leads. This
has two reasons: For one, the length of the average trajectory is shorter.
Shorter trajectories have less time to separate because of their different en-
ergies. Secondly, for narrow leads, diffractive effects play an important role
[29]. As diffraction at the lead-opening is a random change in direction, it
destroys retracing.

The influence of diffraction can be investigated by comparing different
geometries. The two different geometries are shown in the inset of Figure
(2.13). In one, the lead is attached at the center of the left side of the
rectangular quantum dot. In the other geometry, it is attached at the bottom
end of the left side. The former structure has two corners at the junction
between structure and lead, the latter only one. Results show that the error is
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Figure 2.13: The root mean square N of the difference between quantum me-
chanical state counting function and semiclassical approximation as a func-
tion of leadwidth W for two different geometries as shown in the inset. The
centered geometry (X) has two diffractive corners at the junction between
superconducting lead and rectangular cavity, thus larger disagreement with
semiclassical theory is expected than in the assymetric cavity (+). Generally,
for decreasing lead width, the error increases. At W = 0.15, the semiclassical
approximation breaks down completely (0N > 10, not shown). The value of
0y/Ap is shown as a function of W as dotted purple line. It stays below 1
for W > 0.5. It’s increase corresponds well with the increase in 6N .

higher in the centered case. This suggests that diffraction at the two corners
might play an important role.

One additional way to determine whether retracing is active is by looking
at the wavefunctions. Figure (2.15) in the next section shows wavefunctions
for narrow leads.

2.5 Circular billiard

As another type of geometry with regular dynamics, we investigate the cir-
cular Andreev billiard. In our investigations, this Andreev billiard system
consists of a circular cavity connected to a superconducting waveguide. The
modular recursive Green’s function method works by solving the Schrédinger
equation in polar coordinates on a circular grid, as shown in Figure (2.14).
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Due to the modular setup of this method the lead width is required to be
small compared to the diameter of the circle, W < 2R.

Figure 2.14: a) Circular Andreev billiard and b) discretization grid on the
circle. We use a symmetry adapted grid to discretize the Schrodinger equa-
tion.

The wave function matching condition used to determine the Andreev
eigenstates is independent of the shape of the geometry attached to the super-
conducting lead. The only change occurs in the calculation of the scattering
matrix used in Equation (2.11).

Both the circular and the rectangular geometry are structures exhibiting
regular dynamics. As a consequence, an initial angular separation between
electron and hole trajectory grows linearly with the length of the trajectory.
From this it follows that the estimate for dy/Ap derived in Equation (2.37)
can be adapted to the circular geometry without change.

In the circular geometry considered, the average s is far greater than in
a rectangular geometry. This is due to star-like trajectories hitting the wall
several times, as shown in the hole part of Figure (2.15, b). Additionally, the
method requires W < R as mentioned above. We used D = 10W in our
calculations. As can be seen by looking at Equation (2.37), dy > A, even
for low energies. From this it follows that semiclassical approximations will
not agree well with quantum mechanical calculations.

Indeed, the results of our semiclassical calculations did agree poorly with
our quantum mechanical calculations (not shown). The discrepancies are
greater than expected by taking into account long trajectories. One possible
explanation for this are diffractive effects. We investigate this by calculating
the wavefunctions of the Andreev eigenstates.

2.5.1 Wavefunctions

Figure (2.15) shows eigenstates of the circular Andreev billiard. We observe
a great difference between electron and hole trajectory, as can be expected
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if retracing is supressed. Especially, when looking at the electron part of
(2.15, b) we can see a very distinct localization of the wavefunction along
semiclassical trajectories. However, even though we observe the electron and
hole to localize around the same classical orbit in some cases, e.g. (2.15, ¢),
the wavefunctions for hole and electron look quite different in the majority
of the cases we investigated.

The difference between the electron and hole injection® angle can be-
come quite large, as in (2.15, a, b). To elucidate this, the insets show the
corresponding semiclassical trajectories. The difference in energies between
electron and hole is too small to allow for such differences without diffractive
effects. As the electron or the hole hit the corner were the lead connects to
the cavity, diffraction occurs. This is an explanation for the different angles
observed in the figure.

3Insofar as we observe a closed structure, there is no injection. What we mean is the
angle ¥ in Figure (2.8).
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electron hole

Figure 2.15: Wavefunctions of the circular Andreev billiard for eight open
modes in the lead. Energies corresponding to kp = 8.5xmw /0.2, /A = 0.23(a),
0.35(b), 0.5(c), and 0.63(d). The diameter of the circle is 2. Clearly, retracing

1s violated, as the trajectories of electrons and holes shown in the insets are
very different.
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Chapter 3

Billiard with soft walls

In the second part of this thesis, we want to investigate retracing under non
ideal conditions. One has to keep in mind that the Andreev billiards pre-
sented in the previous chapter are ideal systems. Even then, the introduction
of a narrow lead is enough to offset the delicate mechanism of retracing, as
we have shown. The premis of small A < Ef is not sufficient to ensure the
reliability of semiclassical approximations relying on retracing.

In a realistic experimental device, several additional effects may disturb
the dynamics of an ideal Andreev billiard. We mention e.g. the presence of
an oxid layer at the SN contact or lattice defects giving rise to diffraction.

To investigate the role of reflections at realistic boundaries in the semi-
classical description of Andreev billiards, we look at a system with soft walls.
A soft wall is a much more realistic description of an experimental situation
than an infinitely high potential wall. Whereas the reflection at hard walls
is energy-independent semiclassically, a soft wall boundary produces energy
dependent classical trajectories. We will show that for the special case of
a harmonic potential the action can still be written as energy times some
properly defined trajectory length, which allows us to adapt P(s) to this
case.

3.0.2 Quantum mechanical treatment

Figure (3.1) shows the dot we want to describe. To retain separability, we
use a system with parabolic potential walls of the form

Vi) =asr (1ol = ) osl - W72 (3.)

and, for simplicity, hard walls parallel to the y-axis. The superconducting
lead of width W is attached to the center of one of the hard walls at z = 0
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Figure 3.1: Quantum dot with harmonic walls at the sides (arbitrary units).
We choose the potential to be soft only at two opposing sides of the geometry
and thereby retain the separability of the discretized Schrodinger equation.

as shown in Figure (3.1). Because the potential is zero for |y| < W/2 due
to the theta function in Equation (3.1), the procedure of the wave function
matching at the SN interface does not change. We only have to incorporate
V(y) into the calculations of the scattering matrix.

The coefficient @ determines the slope of the potential as a multiple of
the Fermi energy. The structure is, in principle, of infinite size in y direction
in contrast to the previously discussed hard wall cavity. In order to obtain in
practice a finite sized cavity for the numerical calcualtions, we replace V(y)
by an infinitely high potential for |y| > D/2. Care must be taken to choose
the cutoff-point D high enough that the wavefunction “does not feel” the
hard wall due to the finite size of the cavity, i.e. some electron wavelengths
behind the point where V (y) reaches the Fermi energy [32].

Because V (y) only depends on y, it is easily incorporated into the modular
recursive Green’s function method. The site energies used in the tight binding
Hamiltonian (2.16) are increased by V' (y;). No other change in the quantum
mechanical calculations of the Andreev billiard is required.
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3.0.3 Semiclassical treatment

To treat an Andreev billiard with soft walls semiclassically, we use a Runge-
Kutta integration to calculate the trajectories in the area were V' # 0. We
assume retracing, i.e. that A is small enough that the energy difference
between electron an hole trajectory results in a separation small compared
to the wavelength of the electron.

In the semiclassical description of quantum billiards with soft walls, clas-
sical turning points play an important role. They have to be accounted for
in the Bohr-Sommerfeld quantization condition by a so-called Maslov index

w [31].

S:j{pdq:%r (n+%> (3.2)

The value of ;1 depends on the dynamics at the turning point. p is two for
the reflection at a hard wall boundary, resulting in an additional phase shift
of 7 for each bounce by an electron or hole, which gives an integer multiply
of 27 in one closed Andreev loop. This is the reason we did not need to take
into account a Maslov index when considering hard wall boundaries.

The reflection at a soft parabolical potential on the other hand results in a
Maslov index of 1 [33], which corresponds to a phase shift of /2. Therefore,
one might think that the complete phase shift due to reflections at the soft
wall boundaries must be included into the calculations, because it is no longer
a multiple of 27, as in the hard wall case. We show in Appendix A.1 that the
phase contribution of the hole due to reflections at the normal conducting
walls of the Andreev billiard is negative and cancels out the contribution of
the electron. As a consequence, one does not need a Maslov index for the
reflection at the cavity boundaries in addition to the one already included due
to the reflection at the SN interface, regardless of the shape of the trajectory.

To calculate the action associated with a trajectory, consider the motion
in a classical harmonic oscillator: The trapped particle travels along an ellipse
in phase-space, with dimensions a = /E/aFEp, b = V2E. The value of the
action integral (2.25) is equal to the area of this ellipse!. The action resulting
from one reflection at the soft wall boundary is thus

ab-m Er
Sre == — . 3.3
f 2 kpy/a (3:3)

1Using the Maslov index, one can derive E/w = h(n + 2 - 1/4), the factor two coming
from the two reflections at both sides of the harmonic potential. Note that one obtains
the exact quantum mechanical eigenvalues with this analysis.
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As the above phase shift is proportional to the energy, it can be properly
included in the theory by renormalizing the length of the trajectory

77
I

Sy — Sy = Sy + ﬁ (34)
which leaves the formula for the semiclassical approximation to the state
counting function Npg(e) (2.32) unchanged. This allows us to still employ a
classical P(s’) containing all the necessary information about the structure

of the cavity.

3.0.4 Results

We want to estimate the influence different values of o will have on the
agreement between the quantum mechanical state counting function and its
semiclassical prediction. Due to the parabolic potential walls, the disagree-
ment between electron and hole trajectories is increased. We give an estimate
of the lateral separation yp (see Figure (3.2)) between electron and hole tra-
jectory after one reflection at the soft wall boundary.

€1

Figure 3.2: Two particles hitting a parabolic wall with different energies €1 <
€9.

If two particles with different energies €1, €2 and some longitudinal mo-
mentum k, hit the soft wall at the same angle, they will be reflected differ-
ently: The particle with the higher transverse velocity gets further up the
slope as shown in Figure (3.2). As a result, there will be a separation between
the two trajectories of

s NAI{?F

SN FP L 5
YD = deva (T Epsja t (8:5)
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The difference in the velocities in y direction dv, can be roughly approximated
by the difference in energies € /kr ~ A/2kp. As the soft walls are parallel to
the z-axis, the separation dy between electron and hole after one complete
Andreev loop will be yp times the number of bounces at the soft walls, which
we set equal to two to obtain an order of magnitude estimate.

Retracing is a good approximation if the harmonic potential is steep, i.e.
a > 1 and the Fermi energy small. Intuitively, this seems clear: The steeper
the potential, the less time the particles spend in the V' # 0 region. A lower
Fermi energy means a lower number of transverse modes in the structure and
therefore a lower number of reflections at the parabolic walls.
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Figure 3.3: Quantum mechanical state counting function and Bohr-
Sommerfeld approximation (dashed green line) for three different potential
coefficients . W = 0.6, krp = 15.5 % 71/0.6, A = 0.04Er. The root mean
square deviation of the semiclassical prediction SN (see (2.38)) is 0.66, 1.15,
and 8.8, dy/Arp ~ 0.2, 0.6, and 1.4.(a —c)

We have tested the predictions of Equation (3.5) by looking at systems
with different potential coefficients . System a) presented in Figure (3.3)
was calculated for a steep potential, @ = 47.3. Results show good agree-
ment between our semiclassical approximation and the quantum results, in
accordance with a low dy ~ 0.2Ar. To get a more quantitative idea of the
agreement between semiclassical approximation and quantum mechanics, we
calculate the root mean square deviation from the quantum mechanical re-
sults defined in Equation (2.38): 0N = 0.9. As « decreases, the agreement
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gets worse. Figure (3.3, b) shows the same system as in a for a = 8.7.
Deviations between quantum mechanical calculations and the Semiclassical
approximation appear. The biggest error seems to be in the regions between
the cusps, at around ¢ = 0.2A and 0.6A. The reason for this is that there
transverse quantization is higher, and thus the wave hits the soft wall several
times, as discussed in Section 2.4.3. In Figure (3.3, ¢) a = 2.1, dy = 1.4\ p,
i.e. the misplacement of the hole relative to the electron is larger than its
de Broglie wavelength. As a consequence, the retracing mechanism breaks
down and semiclassical approximations relying on retracing fail. No distinct
cusps are visible in contrast to a, b.
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Figure 3.4: Quantum mechanical state counting function and Bohr-
Sommerfeld approximation (dashed green line) for W = 0.6, A = 0.02EF,
kf = 10.5 * /0.6, o = 8.7. The root mean square deviation SN is (.60,
0y = 0.2\ as in Figure (3.3, a)

Figure (3.4) shows a system with a substantially lower Fermi energy as
in Figure (3.3, b). For the same o = 8.7, the accuracy of the semiclassical
prediction is increased in comparisson to Figure (3.3, b), as predicted by
Equation (3.5).

To determine whether indeed the absence of retracing is responsible for
the large d NV in (3.3, d), we calculated the appropriate quantum mechani-
cal wavefunctions. Figure (3.5) shows four Andreev eigenstates of a system
similar to the one in Figure (3.3,d). The violation of retracing can be seen
by comparing electron and hole wavefunctions. The hole part of b shows a
wavefunction that looks like an eigenstate of the closed cavity. Indeed there
is such an eigenstate at the appropriate energy.
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electron hole

Figure 3.5: Wavefunctions for the rectangle with soft potential walls. kp =
15.57/0.6, a = 2.1, ¢ = 0.27, 0.29, 0.52 and 0.55A (from top to bottom).
The parameters are the same as in Figure (3.3,d) apart from A = 0.02E.
One can see well the lengthening of the wavelength as the wavefunction climbs
up the potential wall. a shows a retracing orbits. Looking at ¢ or d however,
we see that retracing is violated. While the hole trajectory hits the soft wall
at the corner, the electron only hits the right wall, but makes an additional
orbit.
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Chapter 4

Magnetic field

The presence of a magnetic field in an Andreev billiard is of wide spread
interest [34][35][36][37]. One reason for this is that the magnetic field is
easily realized as a control parameter of the experiment. From the theoretical
point of view a magnetic field is interesting because it destroys retracing. The
reason for this is that the hole not only has opposite charge compared to the
electron, but also opposite mass and is thus equally affected by the magnetic
field as the electron. For a comparison of the different quantities for electron
and hole, see Figure (4). In the high magnetic field regime, the SN interface
gives rise to skipping orbits with alternating electron and hole states [38], as
shown in Figure (4.2).

‘ k v m q ‘ Equation of motion

electron ke V. Mef e| v=e/meg(v xB)
hole —ke Ve —Mmeg —e | V=e/meg(v xB)

Figure 4.1: Comparison of different quantities for electron and hole. q/m =
(e/Megr)e = (€/Megt)n-

We will investigate both low and high magnetic field regimes, present
a semiclassical description for the low magnetic field case and discuss its
limitations.

4.0.5 Implementation of a magnetic field

In the presence of a magnetic field B = Be,, the Hamilton operator (2.5) is
replaced by

He (p—gA>2+V(X)—EF (4.1)
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Figure 4.2: Alternating skipping orbit on a SN boundary in a strong magnetic
field perpendicular to the two dimensional structure. As electron and hole are
deflected in the same direction retracing is destroyed.

\j

For the vector potential A, satisfying B =V x A, we have in Landau gauge

B
A=—-y—e,. (4.2)
c

According to [39], the magnetic field is incorporated into the calculation of
the scattering matrix by a Peierls-phase factor in the hopping potential used
to describe the coupling between adjacent gridpoints in the modular recursive
Green’s function method [24].

In the presence of a magnetic field, the transverse eigenfunctions of the
lead x,(y) # sin(ky,z). In general, the x, will be a linear combination of
Kummer functions. As the magnetic field destroys time reversal symmetry,
there are two different transverse eigenfunctions, one for the right-moving
and one for the left-moving electron or hole. This gives 2n linearly depen-
dent transverse eigenstates of the lead, which fulfil a nontrivial orthogonality
relation [24]. As a consequence, the simple argument in (2.2.2) by which we
could use the linearly independent x,(y) to eliminate the sum over all modes
in (2.7, 2.8) fails.

Due to the Meissner effect, the magnetic field cannot penetrate into the
superconductor! and decays exponentially according to B = Bye®*0(—x),
where A is the penetration depth of the magnetic field into the supercon-
ductor [19]. However, for the exact treatment of the magnetic field in the
superconductor, one has to determine the phase of the pair potential A cor-
rectly [40]. In Landau gauge, the pair potential is y-dependent [41]

A(y) — Aoei sgn(B)y.AB/c (43)

I'More precisely, the magnetic field will not penetrate into the superconductor as long
as it is lower than the critical field B¢ in which the superconductor becomes normal
conducting.
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Figure 4.3: Rectangular Andreev billiard with a perpendicular magnetic field
applied B to the cavity (shaded green). B = 0 in the lead, which becomes
superconducting after a short distance d (shaded blue). In the white normal
conducting area at the junction between lead and cavity there is no magnetic

field.

The above facts make an exact inclusion of a magnetic field at the SN
interface quite complicated. As our discussion of the magnetic field case
focuses on the destruction of retracing properties, we consider a system where
the magnetic field is set to zero inside the short normal conducting part of the
lead of length d and in the superconducting region (as shown in Figure (4.3)),
which allows us to continue to use Equation (2.14) while still considering the
effect of a broken time reversal symmetry in the cavity. By this approach,
we neglect the influence of the magnetic field on the probability of Andreev
reflection [42][43]. Technically, we assume d to be very small compared to
the size of the system.

4.0.6 Low magnetic field region

The low magnetic field region is characterized by nearly straight line classical
trajectories, i.e. the cyclotron radius is much larger than the dimension of
the cavity itself. For a semiclassical description, we can therefore neglect the
curvature. Quantum mechanically, this corresponds to neglecting the dia-
magnetic term in (4.1)[27], which is proportional to A%. The low-magnetic
field region is interesting because we can still attempt a semiclassical descrip-
tion (retracing is still valid if trajectories are straight) and we can investigate
in what limits the retracing approximation is still valid.

Increasing the magnetic field from zero, the cusps in the state counting
function N(e) are washed out and finally vanish. Figure (4.4) shows the
position of the energy levels for different magnetic field strengths. The energy
levels do not cross, due to the non-crossing-rule of Wigner and von Neumann.
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Figure 4.4: Energies of different Andreev levels as a function of the magnetic
field strength. kp = 15.517/0.8, D = L = 1. For B/c =0, the cusps at € =
0.4A and € = 0.7TA are marked by arrows. As the magnetic field increases,
the energy levels spread out. For B/c = 2, no distinct cusp structure remains.

While the eigenstates at the cusps are strongly affected by the magnetic field,
the two energy levels at € = 0.85A and € = 0.12A are nearly unaffected by
it. These two states correspond to bouncing ball states of the closed normal
conducting billiard as shown in Figure (4.5) a, ¢. Their relative insensitivity
with respect to B is explained by the fact that they do not enclose a finite
area. The figure also shows a trajectory hitting all four sides of the cavity
and thereby enclosing an area of 0.5 twice (as electron and as hole). This
would give an energy shift of about
- /{ZF B oe

de ~ ?(A? + Z) — e =0.3A (4.4)

which fits well with the numerically calculated difference in eigenenergies of
0.29A.

4.0.7 Semiclassical description

As we consider straight trajectories, the magnetic field enters our semiclas-
sical description only through an Aharonov-Bohm phase A - B/c due to the
magnetic flux enclosed by electron and hole [26]. A is the enclosed directed
area of the trajectory calculated according to [29]. Note that A can be both
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Figure 4.5: Change of the wavefunction from zero to 1.3/c a.u. mag-
netic field strength. 10 open modes in the lead, W = 0.8. a and c
show a bouncing ball state which is nearly unaffected by the magnetic field
(/A = 0.107(a),0.102(c) ), while the wavefunction and energy in b and d
change dramatically (/A = 0.71(b), 0.42(d)). Note the enclosed area in d,
roughly half the size of the cavity, which is responsible for the strong magnetic
field dependence of the energy.

positive or negative depending on the orbit direction. With these considera-
tions, Equation (2.28) changes to

o B 15 k’F
sp(e, A) = (mr +A- " + arccos (Z)) — (4.5)

Because s,(¢) is now dependent on the enclosed area, we extend the classical
pathlength distribution P(s) to a joint distribution P(s, A) which gives the
classical probability that a trajectory entering the cavity exits after length s
enclosing the area A, normalized such that [ [ P(s, A)ds dA = 1.

The state counting function can then be expressed according to (2.32)
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Figure 4.6:  Quantum mechanical state counting function and BS-

approximation (green dashed line) for B/c =0, 0.33, 0.66 and 1. The Fermi
wavenumber is kp = 15.57/1. The misplacement of the hole relative to the
electron 8y due to the magnetic field is (0.,0.38,0.76, 1.27) A\ .

with an additional integral over all possible enclosed areas

Nps=MY_ / / P(s, A)ds dA. (4.6)
n=0“ — sn(g,A)

We used the same Monte Carlo simulation as before to determine P(s, A).
Areas to a maximum of 0.8 a.u. were considered. Results for Npg are
shown in Figure (4.6). The semiclassical prediction describes the effect of
the magnetic field quite well up to a field strength of B/c ~ 0.66. Though
the qualitative picture is still quite correct for B/c = 1, the semiclassical
approximation underestimates the spreading of the energy levels.

The cyclotron radius in atomic units is ckp/B, in this case for B/c =1
about 50, which is much larger than the size of the rectangular cavity (area
A =1). The change in P(s, A) due to the curvature of trajectories induced by
the magnetic field is minimal and has no relevant effect on N(g). To better
understand the discrepancies visible for B/c = 1, one has to explicitly look
at how strongly the magnetic field affects retracing.

Considering a straight trajectory of length s connecting the SN interface
with itself, we attempt to give an estimate for the width 4/ (see Figure (4.7))
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Figure 4.7: a) Difference between a straight line and a curved trajectory in
a quadratic Andreev billiard (W = L = 1). The classical cyclotron radius is
R = 5. To avoid confusion, only the electron trajectory is shown. b) shows
the same situation in the extended zone scheme (see Figure (2.8)). In case
of a magnetic field, one has to invert the sign of the magnetic field after
each reflection. The length of the trajectory s = 4R, as needed for Equation

(4.7).

2

0l =~ ssin(f) = ssin(&) A~ Z_R

After hitting the right wall, the trajectory curves back and hits the SN
interface 0l apart from a straight line trajectory. The Andreev reflected
hole will be equally deflected, resulting in a total separation of 2/ in one
Andreev loop. In order for retracing to stay valid, this quantity has to be
small compared to the electron wavelength:

(4.7)

2 2

oy _ 200 kps” _ Bs® (4.8)
AF Ar 4n R 4rme

where in the last step we have used R = ckp/B. Interestingly enough, dy/Ap

is independent of the electron energy: The higher the Fermi energy, the larger

the cyclotron radius, but the higher the resolution with which the electron

“notices” that it does not arrive at the exact point the electron started from.

With this observation, we reconsider the results presented in Figure (4.6):

It is not surprising that the semiclassical approximation does not yield perfect

results for B/c = 1. At this magnetic field strength, dy = 1.27\r, which is
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high enough for the electron to start noticing that retracing is no longer
exact.

electron hole
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Figure 4.8: Electron and hole wavefunction for two different magnetic field
strengths (a: B/c = 0.85, b: B/c = 1.3). While the electron wavefunction
(left side) is quite unaffected by the magnetic field, the hole wavefunction
changes considerably. Retracing is no longer valid. ¢/A = 0.85(a),0.9(b),
system parameters see Fig. (4.5)

The disappearance of retracing orbits with increasing strength of the mag-
netic field can be seen in the wavefunctions too: Figure (4.8, a) shows an
Andreev state where B/c is weak enough to allow for retracing. As the mag-
netic field increases further, the hole wavefunction changes drastically and
becomes quite dissimilar in symmetry to the electron wavefunction ( see Fig-
ure (4.8, b)), as one would expect if the hole does not retrace the path of
the electron. In contrast to a and ¢ in Figure (4.5), which are dissimilar due
to the excitation of an energy level of the closed normal conducting billiard
near the energy Fr — ¢, this discrepancy appears with increasing magnetic
field strength.

4.0.8 High magnetic field region

If the cyclotron radius is smaller than the dimensions of the cavity, we observe
signatures of skipping orbits along the boundary in our wavefunctions. Figure
(4.9) shows an example. Note that even though there is no retracing, and
the electron and hole wavefunctions in the cavity do look different from each
other, the superconducting part is very similar as demanded by the coupling
in the B-dG equation. The evanescent part of the wavefunction inside the
superconducting lead is very short, as e < A .

In the regime of high magnetic field B, there are noticeably fewer energy
levels than in the retracing regime. This becomes clear in the semiclassical
picture: If retracing is operative, there is a continuum of periodic orbits,
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Figure 4.9: FElectron and hole moving along a skipping orbit. Both move
counterclockwise along the wall. krp = 20.517/0.4, B/c = 966, ¢ = 0.164A.
The dimension of the cavity is 1 X 1, the width of the lead W = 0.4, the
classical cyclotron radius = 1/6.

i.e. all lines connecting the SN interface with itself. As soon as retracing
breaks down, only periodic orbits connecting one single point with itself are
present. Figure (4.10) shows the lowest singular value of (2.14) as discussed
following (2.15). A zero of this function represents an Andreev bound state.
For an Andreev billiard with intact retracing, the minima are very sharp
and pronounced, as shown in Figure (4.10, a, b). There are no minima that
do not produce a zero. As soon as the process of retracing is disturbed,
the energy levels start to move away from the real axis to complex values
of €. Physically this means that these eigenstates change into resonances.
The figure shows all three sofar discussed effects which disturb retracing, i.e.
soft walls, magnetic field and narrow leads (¢ — d). Note that the change is
independent of the cause of the perturbation as long as it affects retracing in
a smooth way.
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Figure 4.10: The lowest singular value of (2.14) in arbitrary units, as a
function of the excitation energy. Shown are the Andreev billiard with intact
retracing, using a linear (a) and a logarithmic (b) scale. In c) the case of
soft walls (v =4), in d) the high magnetic field case (B/c = 600), and in e)

the narrow lead case (w = 0.1) for 15 open modes in the lead are shown.
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Chapter 5

Potential barrier at the SN
interface

Another way of changing the role of retracing, is to reduce the probability
for Andreev reflection by introducing a potential barrier at the SN interface.
This case is practically very relevant since in an experiment the interface will
never be perfect.

5.0.9 Quantum mechanical treatment

We model the potential barrier at the interface between a quadratic N-region
and the superconducting lead by introducing a delta function at the SN
interface. The corresponding potential V' (x) = Upd(z — xgy) enters via the
wavefunction matching condition (2.13), which changes to

8x¢N(x7y)|x:0 = 8x¢5(:pay)|$:0+2UO¢S(07y)' (51>

In the homogeneous matrix equation (2.14), the term iQ*" is replaced by
iQ" 21U 1.

Figure (5.1) shows the z-dependence of a wavefunction for e = 0.974A.
Due to the complex ¢, in the exponential, the wavefunction oscillates in
the superconducting region while decaying exponentially. For the Andreev
eigenstate shown in the figure, the probability to find the electron in the
classically forbidden region is actually higher than in the allowed region.
There is no correspondence between this eigenstate and a classical orbit.
As a consequence, eigenstates of this type are difficult to predict using the
semiclassical techniques presented.

The probability of Andreev reflection depends on the potential barrier
strength. Introducing the dimensionless barrier strength Z = Uy/kp, we can
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Figure 5.1: z-dependence of the electron (left) and hole (right) eigenfunction
(arbitrary units) for a deltapotential of strength Uy = 5, ¢ = 0.9T4A, ky =
5.5m, quadratic geometry with area A =1, W = 1. The jump in the derivative
of the wavefunctions due to the delta function at x = 0 s clearly visible. The
hole wavefunction is enlarged near the SN interface.

write the probability P4 for Andreev reflection as [18]

AQ

Py= .
AT 2 (AT —2)(1+222)?

(5.2)

P4 is shown in Figure (5.2). The corresponding probability for normal re-
flection is Py = 1 — P4. One can see in the figure that P4 reduces to 1 in
the case of Z = 0.

Deriving a valid expression for the phase jump d¢ is difficult. As shown
in Appendix A.2,

1
d¢ = —arccos (\/1 N ONAEE 222)2> (5.3)

represents the phase difference between an incoming electron wave and the
Andreev-reflected hole. However, if one considers an Andreev eigenstate,
there will be an incoming hole wave too. For Z = 0, this does not influence
the phase jump from electron to hole. If Z # 0 however, the phase of the
outgoing hole will depend nontrivially on the phase of the incoming hole as
well, because the probability for the incoming hole to be reflected normally is
non zero. The same argument holds when considering an incoming hole and
the Andreev reflected electron. The magnitude of the phase shift due to the
reflection at a SN interface with a non-vanishing barrier is underestimated
by (5.3).

As the barrier potential is smoothly switched on, the energies of the eigen-
states change as shown in Figure (5.3). In contrast to the magnetic field case,

46



.!
N
N
N

N

h
."m
7"
i
o
o\
i\
N
S
N
I~
I~

o

D

)

o
)

-~
SRR
P S SRR
A AR
1 R BRI
RIS
PRSIERIERN
0.75 R
0.5 N
0.25 S
0

Figure 5.2: Probability for Andreev reflection Pa as a function of barrier
strength Z and energy €/ A.

the eigenenergies do cross, because the barrier at the SN interface does not
depend on y and therefore the transverse quantum number is still a “good”
quantum number to discern the eigenstates. As can be seen by looking at
the expression for the phase at the SN interface with a barrier (5.3), the
eigenenergies should increase with increasing barrier potential: Increasing 7
results in an increased value of d¢, representing a “harder” wall. This is pre-
dicted correctly by a semiclassical approach using Equation (5.3). However
the phase shift given by the quantum mechanical calculations is higher than
what we expect semiclassically (not shown).

Moreover, as shown by Mortensen et al.[23], the phase shift d¢ is de-
pendent on the angle of incidence of the incoming electron. To describe
this feature theoretically it is useful to define an effective potential strength
Zeog = Z/ cos(0), where 6 is the angle of incidence. Z.g > Z as 6 approaches
7/2. This is the reason why the eigenenergies with higher transverse quan-
tum number in Figure (5.3) change more rapidly as a function of Z = Uy /kp
than the ones situated at the cusp: The former have a higher transverse
momentum, and therefore higher Z.g.

While the eigenenergies situated at the cusp move slowly to higher ener-
gies as the potential increases, there are states with decreasing ¢ as well if
one looks at Figure (5.3). They are the result of trajectories which no longer
show retracing, as we will show by looking at the eigenstates.
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Figure 5.3: Figenenergies of the rectangular Andreev billiard as a function
of barrier strength. There are five open modes in the quadratic cavity, krp =
5.5 xm, W = 1. The transverse quantization number of each eigenstate is
noted in the figure. We use dashed green lines for every other eigenenergy to
make it easier to discern the different eigenstates.

Figure (5.4) shows the quantum mechanical state counting function for
different potential strengths. For low barrier strength ( @ and b in the figure),
the general shape of N(g) looks similar to Uy = 0 (compare e.g. Figure
(2.10)). The only effect is a slight shift to higher energies, due to the increased
phase jump at the SN interface. A cusp structure remains as the strength
of the potential increases, as shown in ¢ and d. Apart from the cusp at
e ~ 0.85A ¢ shows a number of states with low energies (¢ € [0.2,0.6]A)
which do not show retracing. As the potential increases even further, these
states cease to exist, and only the cusp at € ~ A remains (see Figure (5.4,
d)).

Figure (5.5) shows the wavefunctions corresponding to the eigenenergies
marked in Figure (5.4). State a is not part of a cusp, and there is no obvious
retracing Andreev orbit visible when looking at the wavefunction. Moreover,
the transverse quantum number in the rectangular cavity n, is quite different
when comparing electron (n, = 5) and hole (n, = 11) wavefunctions. On
the other hand, b — d form part of a cusp, and correspond to Andreev loops.
The eigenstate d, situated directly at the cusp, looks very similar to the
state shown in Figure (2.11, F). It has a transverse quantum number of

48



0 02 04 06 08 02 04 06 08 1

20 T T T T T T T T 20
N — a) UO =2
10 -+ 10
20 I I I I 0
10
10
0 ! ! ! ! 1N
0 0.2 04 06 08 0.2 04 06 028 1
e/A

Figure 5.4: Quantum mechanical state counting function for four different
barrier strengths, as shown in the insets. kg = 15.57 /W, W = 1(a,b), 0.8(c,
d). The arrows in c) mark the energies of the wavefunctions shown in Figure

(5.5).

one. Like in the Uy = 0 case, if one looks at a given cusp, states with
lower transverse quantum number are higher in energies. However, the slow
decrease in transverse quantization, as e.g. shown in Figure (2.11), is no
longer present: There is no Andreev eigenstate between ¢ and d in Figure
(5.5), in spite of the great difference in transverse quantum numbers. Note
the difference in the length of the semiclassical orbits corresponding to ¢, s ~
2v/2 and d, s &~ 2, in spite of a comparatively small difference in eigenenergies.
This is because of the angular dependence of Z.g, which modifies the phase
jump due to Andreev reflection.

It is worth noticing that even for very high barrier strength (Uy = 200), a
cusp situated nearly at € = A remains. The probability of Andreev reflection
(5.2) Py = 1 near € & A and is independent of Z as shown in Figure (5.2).
This is the reason why the cusp remains so stable at high barrier strength.
Non-retracing Andreev states dominate for lower €. They do not form a
distinct cusp structure, and slowly die out as the potential barrier strength
increases, as can be seen by comparing ¢ and d. The reason for this is that
the probability for Andreev reflection P, is different from zero only for e = A
for high Z as shown in Figure (5.2).
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Figure 5.5: Electron and hole wavefunction with a barrrier Uy = 30 at the SN
interface, kp = 15.517/0.8. The eigenenergies corresponding to the eigen-
states are marked in Figure (5.4). Eigenstate a (¢ = 0.43A) does not show
retracing. The three eigenstates b — d (energies 0.855(a), 0.865(b), 0.89(c)
in units of €/A) form part of a cusp. Note the comparatively high value of
the wavefunction in the classically forbidden S region, as discussed in Figure

(5.1).
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Chapter 6

Summary and Outlook

In this thesis, we present a method for calculating eigenenergies and the cor-
responding wavefunctions of Andreev billiards. Our attention is particularly
focused on billiard systems with a rectangular and a circular geometry. Us-
ing the modular recursive Green’s function method allows us to calculate
quantum mechanical eigenenergies and eigenfunctions with great accuracy.

These wavefunctions also yield information about retracing: By observing
the change in the wavefunctions as e.g. the magnetic field increases, we can
identify whether the hole still retraces the path of the electron by comparing
the symmetry of electron and hole wavefunctions.

We present the semiclassical Bohr-Sommerfeld approximation using re-
tracing and compare it to the actual quantum mechanical results. By looking
directly at the quantum mechanical wavefunctions, we can identify the differ-
ent paths the semiclassical approximation predicts for specific eigenenergies.
Making use of a transverse quantization condition allows us to provide an
approximation formula for the quantum mechanical eigenenergies.

Starting out from a rectangular model system with a wide superconduct-
ing lead, we investigate the change in dynamics as the lead becomes narrower.
We find that below a certain leadwidth semiclassical approximations relying
on retracing break down completely. By looking at the wavefunctions of the
eigenstates of a circular Andreev billiard, we conclude that diffractive effects
play an important role in the regime of narrow leads.

We investigate thorougly the effect of non-ideal retracing conditions in
an Andreev billiard: We consider a billiard with soft walls to investigate
a more realistic confining potential and the effect of the Maslov index, a
low magnetic field to destroy exact time reversal symmetry and a potential
barrier at the SN interface to decrease the probability of Andreev reflection.

We develop a semiclassical approach for these different effects. We show
that the ratio between hole displacement and de Broglie wavelength of the
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electron is an indicator for how good the retracing approximation is. This
allows us to predict the point where semiclassical approximations relying on
retracing fail to predict quantum mechanics.

By looking at the determinantal equation for the eigenenergies in an An-
dreev billiard, we can see the movement of the eigenenergies away from the
real axis. Physically this means that the eigenstates change into resonances.
We find that this behaviour is independent of the type of the effect respon-
sible for the absence of retracing, as long as the hole displacement dy is
smoothly dependent on the perturbation.

The methods presented in this thesis are suitable to investigate other
geometries for the Andreev billiard. A very interesting case would be a
chaotic cavity, e.g. a Bunimovich stadium. This structure exhibits chaotic
dynamics in the normal-conducting state. By bringing it in contact with a
superconductor, a new class of periodic orbits is created, giving rise to regular
dynamics.

Another topic we have not discussed is the semiclassical description of
Andreev billiards without relying on retracing and the Bohr-Sommerfeld
quantization rule. Using this approach it would be possible to investigate
Andreev billiards in e.g. a high magnetic field semiclassically.

By using open structures with more than one lead, one can investigate
either billiards in contact with two superconductors or transport through an
Andreev billiard. The former would allow to introduce a phase difference in
the two pair potentials. The latter makes the Andreev billiard accessible to
quantum transport investigations.
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Appendix A

Derivation of SN reflection
phase

A.1 Clean SN interface

We first investigate the scattering at a clean SN interface. The SN interface
is situated at xgy = 0, the superconductor extends in negative x direction.
Using the same approach as in [18], we make the ansatz of an

i ; 1 i 0
N = "
w (6 ikex + aezkem> < ) 4 be ikpx < )
0 1
Ys = ce " ( 1 ) +dee < 71 ) . (A-1)

In order for ¥g to be an eigenfunction of the B-dG equation (2.4), v =
A/(e + VA% —2), |7]> = 1. The coefficient |a|* gives the probability for
normal reflection, |b|? the one for Andreev reflection. We insert the ansatz (A-
1) into the wave function matching conditions (2.12) and (2.13). To simplify
the calculations, we assume k. j ~ gt ~ kp.

Q/JN(O) = ¢S(O)

l+a = ~e+7'd (A-2)
b = c+d (A-3)
aa:@Z)N(x”a::O = 89077Z)S("L‘)|a::0 :
—14+a = —yc+v"d (A-4)
—b = —c+d (A-5)

The solution of the above system of equationsisa =d =0,b=c=1/7.
The phase difference between incoming electron and Andreev reflected hole
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is the phase of b,

arg(b) = —arg(y) = —arccos <Re(’y)) = —arccos(e/A) (A-6)

v[?

which is used in (2.6).

Now we want to show that the phase jump of the hole which is Andreev
reflected into an electron makes another contribution of (A-6). After being
reflected inside the cavity, the hole returns with a negative sign in the expo-
nent. This corresponds to the same calculation as for the electron using the
ansatz

Yy = (eik” + ae‘ikh””) ( (1] ) + betke® ( (1] ) (A-7)

which yields exactly the same result for the argument of b as in (A-6) (not the
negative one). From this, it follows that the two phase jumps due to Andreev
reflection indeed add up to a total of two times (A-6) in one Andreev loop.
This is in contrast to phase jumps due to reflections at normal conducting
walls inside the cavity. Consider for example an electron wave hitting a
potential barrier of finite height V' = V,0(z) situated at = = 0. If the height
of the potential is higher than the energy of the incident electron F, it will
be reflected back. Inserting into a one dimensional Schrodinger equation the
ansatz

Y = (™ + a.e”* )0 (—z) + be"(z), k=V2E, k=20, —E) (A-8)
we obtain the coefficient of the reflected wave as

K2 — k% + 2ikk
K2 + k2 ’

ae = (A-9)
The magnitude |a.| = 1. The sign of the imaginary part of a, and thereby
the sign of the phase arg(a.), depends on the sign of k. A hole moving in the
same direction as the electron is described by the ansatz

Y = (e7* 1 a,e™*)0(—x) + bpe™0(x). (A-10)

The coeffients a,. and aj, are related by a. = aj. As a consequence, arg(a.) =
—arg(ay). For a harmonic potential, the calculations are more difficult, but
the result is the same. In contrast to Andreev reflection, the total phase
contribution due to a reflection at a normal conducting parabolic wall in an
Andreev loop is thus arg(a.) + arg(ap) = 0.
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A.2 Potential barrier at the SN interface

Finally, we look at what happens if a barrier of strength Uy = kg - Z at
the SN interface is present. In this case, we insert the ansatz of Equation
(A-1) into the matching conditions (2.12) and (5.1). After making the same
approximations as in A.1, we obtain the result

1
b = ——— A-11
v+ 272Imry ( )
arg(b) = —arg(y + 2iZ*Imry)

Revy
= —arccos | ——— s
|y + 21Z2Im-y|

1
—arccos <\/1 NS G 1>2> . (A-12)

In the case of Z=0, this simplifies to (A-6).
However, the above formula is no longer true if one uses the more general
ansatz of an incoming electron and hole, which have a phase difference d¢

wN _ (ezkex _'_aezk:em> < 0 ) + (ezM)ezkhm + befzk:h:v) ( ? ) ) (A—13>

In this case, b consists of contributions from an Andreev reflected electron
and a normal reflected hole.

1+2Z(i + Z)Imrye'??

b=
27°Imry — v*

(A-14)

The phase d¢ shows up in the numerator of b. As a consequence, the phase
of b depends nontrivially on d¢, which cannot be known without solving the
quantum mechanical problem for a particular trajectory.

From this we conclude that it is not possible to give as general a formula
as (A-6) for the Maslov index of an SN interface with a barrier present.
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Appendix B

Semiclassical eigenenergies

We will try increase the accuracy of the formula presented in Equation (2.35)
further. We start out from the transverse quantization condition for &,

m x T

bym = =57

(B-1)

We do not make the Taylor expansion in calculating the action integral (2.26)

S = s(ke — kp) :sﬁ(\/EF e \/EF+5>. (B-2)

To shorten the notation, we define kf n = 2(Erp+e). To take into account the
difference in length between electron and hole trajectory, we split up their

contributions . |
Se + Sp
— = I . B-3
° 2 (cos(&e) i cos(@h)) (B-3)

For the definitiopn of 0, see Figure (2.8). We now discern between electron
and hole angle. Both can be expressed using the wavenumbers:

Kym
sin(fep) = k% (B-4)
e,h
Now we use the more accurate Equation (B-3) for the path length s in (B-2).

According to Equation (2.28), we insert the Maslov index arccos() of the
reflection at the SN interface. Finally, we arrive at

kpL

ke kh
(ke - kh) +
2 V=R, ek,

which was used to determine the eigenenergies in (2.12).

= nm + arccos(e/A).  (B-5)
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