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Abstract

A tunable microwave scattering device is presented which allows the controlled variation of Fano line shape
parameters in transmission through quantum billiards. We observe a non-monotonic evolution of resonance
parameters that is explained in terms of interacting resonances. The dissipation of radiation in the cavity walls leads to
decoherence and thus to a modification of the Fano profile. We show that the imaginary part of the complex Fano ¢-
parameter allows to determine the absorption constant of the cavity. Our theoretical results demonstrate further that
the two decohering mechanisms, dephasing and dissipation, are equivalent in terms of their effect on the evolution of

Fano resonance lineshapes.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Asymmetric Fano line shapes are an ubiquitous
feature of resonance scattering when (at least) two
different pathways connecting the entrance with
the exit channel exist. Fano resonances have been
discussed in many different fields of physics
starting with photoabsorption in atoms [1-3],
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electron and neutron scattering [4,5], Raman
scattering [6], photoabsorption in quantum well
structures [7], scanning tunneling microscopy [8],
and ballistic transport through quantum dots
(““artificial atoms”) [9-14] and molecules [15,16].
Interest in observing and analyzing Fano profiles
is driven by their high sensitivity to the details of
the scattering process. For example, since Fano
parameters reveal the presence and the nature of
different (non) resonant pathways, they can be
used to determine the degree of coherence in the
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scattering device. This is due to the fact that
decoherence may convert Fano resonances into
the more familiar limiting case of a Breit—Wigner
resonance. Furthermore, Fano profiles provide
detailed information on the interaction between
nearby resonances leading to “avoided crossings”
in the complex plane [17,18], and to stabilization
of discrete states in the continuum (‘“‘resonance
trapping” [19,20]). Possible technological applica-
tions of Fano resonances have recently been
suggested in Ref. [21], exploiting the transmission
resonances in transport through open quantum
dot systems as a means to generate spin polariza-
tion of transmitted carriers.

Using the equivalence between the scalar
Helmbholtz equation for electromagnetic radiation
in cavities with conducting walls and the Schro-
dinger equation subject to hard-wall boundary
conditions [22], we have designed a scattering
device (Fig. 1) that allows the controlled tuning of
Fano resonances for transport through quantum
billiards. The evolution of the Fano parameters as
a function of the tuning parameter, in the present
case the degree of opening of the leads, can be
traced in unprecedented detail, since decoherence
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Fig. 1. (a) Schematic sketch of the rectangular cavity with leads
attached symmetrically on opposite sides. Exchangeable dia-
phragms at the lead junctions allow to control the coupling
between the cavity and the leads. The open even transverse
states are indicated. (b) Photograph of the experimental setup.

due to dissipation can be controlled. By compar-
ison with calculations employing the modular
recursive Green’s function method (MRGM)
[11,23], the parametric variation of Fano reso-
nances and the degree of decoherence can be
quantitatively accounted for. Furthermore, the
relevant pathways can be unambiguously identi-
fied in terms of wavefunctions representing the
contributing scattering channels. Due to the
equivalence between microwave transport and
single-electron motion in two dimensions, our
device can be understood as a simulation of
ballistic electron scattering through a quantum
dot. In contrast to recent investigations of meso-
scopic dots and single-electron transistors
[9,12,24], where the comparison between theory
and experiment has remained on a mostly quali-
tative level, our model system allows for a detailed
quantitative analysis of all features of tunable
resonances.

2. The model

Our microwave scattering device consists of
two commercially available waveguides with
height # = 7.8 mm, width d = 15.8 mm, and length
[ =200 mm which were attached both to the ent-
rance and the exit side of a rectangular resonator
with height H = 7.8 mm, width D = 39 mm, and
length L = 176 mm, resulting in a circumference
C =430mm and area 4 = 39mm x 176 mm (both
in the plane). At the junctions to the cavity, metallic
diaphragms of different openings were inserted
(Fig. 1). The microwaves with frequencies between
12.3 and 18.0 GHz, where two even transverse
modes are excited in the cavity and one tran-
sverse mode in each of the leads, are coupled into
the waveguide via an adaptor to ensure strong
coupling.

The experimental results are compared with the
predictions of the MRGM. We solve the S matrix
for the single particle Schrédinger equation for
this “quantum dot” by assuming a constant
potential set equal to zero inside and infinitely
high outside of a hard-wall boundary. At asymp-
totic distances, scattering boundary conditions are
imposed in the leads. The coupling of the leads to
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the cavity of length L can be varied by the two
diaphragms which are placed symmetrically at the
two lead openings. The lead width d and the width
of the rectangular cavity D determine how many
flux-carrying modes are open at a certain energy &
in each of the three scattering regions (lead-cavity-
lead). We consider in the following the range of
wavenumbers where one flux-carrying mode is
open in each of the leads. Inside the cavity the first
and second even transverse modes are open, thus
providing two alternative pathways of transport
through the structure. In order to characterize
the interfering paths, we decompose the tran-
sport across the cavity into a multiple scat-
tering series involving three pieces [25], each of
which is characterized by a mode-to-mode trans-
mission (reflection) amplitude or a propagator (see
Fig. 2): (1) the transmission of the incoming flux
from the left into the cavity, #I, or reflection back
into the lead, ¥, (2) the propagation inside the
cavity from the left to the right, G*®), or from the
right to the left, GRY and (3) the transmission
from the interior of the cavity to the right, t®), or
internal reflection at each of the two vertical cavity
walls with amplitude ®. For the Green’s func-
tions (i.e. propagators) GM®(xg,x1) and
G®RY(x1,xgr) we choose a mixed representation
which is local in x, and employs a spectral sum
over transverse modes, G(LR)(xR,xL) = GRD
(xL,xr) = >, In) exp(ik,|xr — x[)(n], where xg
are the x-coordinates of the right (left) lead
junction with |xgr — x| = L. The longitudinal
momentum for each channel n in the cavity is

given by k, = /k* — (kfl)2, with the momentum

k = +/2¢ and the threshold k-values k¢ = nm/D.
Decoherence due to dissipation of the microwave
power in the cavity walls can be easily incorpo-

Fig. 2. Decomposition of the scattering device into three
separate substructures: (1) a junction from a narrow to a wide
constriction (with diaphragm), (2) a wide constriction of length
L, and (3) a junction from a wide to a narrow constriction (with
diaphragm).

rated by analytically continuing k, into the

complex plane, k, = \/k* — (k) + ix.

The multiple scattering expansion of the trans-
mission amplitude 7 is then given by

o0

T(k) = (V) G(LR){ [R) GRL D) GLR)p } B

n=0

— t(L)G(LR)[l — R GRL) (L) G(LR)]_IZ(R). (1)

The identification of the resonant and non-
resonant pathways with help of Eq. (1) is
straightforward: due to the absence of inter-
channel mixing in the rectangular (i.e. non-
chaotic) cavity, the non-resonant contribution
corresponds to the n=0 term of the sum
describing direct transmission while the resonant
contribution is made up by all multiple-bounce
contributions (n>=1). The various amplitudes
entering Eq. (1) can be parametrized in terms of
four phases and two moduli [26]: the modulus, s,
of the reflection amplitude of the wave incoming in
mode 1 and reflected into mode 1 at the left
diaphragm,

AL = s, )

and the modulus, p, of the partial injection
amplitude of the incoming wave into the lowest
mode of the cavity, corrected for the partially
reflected flux (Eq. (2)),

(1)
1) =6 =pV1 - . 3)
Because of the symmetry of the scattering device,
the injection (ejection) amplitude at the left (right)
side are equal. Accordingly, the injection ampli-

tude into the second even mode of the cavity is
given by

1 = i = =) =) . @
Analogous expressions can be deduced [26] for the
other partial amplitudes entering Eq. (1). We omit
a detailed analysis of the phases in Egs. (2)—(4)
since they do not explicitly enter our analysis in the
following. The key observation in the present
context is that the square module s> is mono-
tonically decreasing between the limiting values
s> =1 for zero diaphragm opening (w = 0)
and s>~ 0 for fully open diaphragms (w = d).
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Inserting Eqgs. (2)-(4) into Eq. (1), a closed yet
complicated expression for the transmission prob-
ability |T'(e, s)|* as a function of the energy ¢ and
the opening parameter s can be derived [26]. Close
to a given resonance ¢} this expression can be
approximated by the Fano form [3,26],

& — eR(s) + q:()i(s) /21
[e — eR()* + [Tis)/21

where &R(s) is the position of the ith resonance,
I'i(s) its width, and g¢,(s) the complex Fano
asymmetry parameter, all of which depend on s.
Window resonances appear in the limit ¢ — 0
while the Breit—Wigner limit is reached for |g|> 1.
Since Fano resonances can be identified as
resulting from the interference between resonances
related to the eigenmodes in the cavity, the
parameter ¢ depends very sensitively on the
specific position of the involved resonance poles
[27,28].

| T(e, ) 5

3. Comparison between experiment and theory

In Fig. 3 we present both the experimental and
theoretical dependence of the transmission prob-
ability |T)? on k (or ¢). In the measurement, the
diaphragms were successively closed in steps of
I mm. The data sets of Fig. 3(a—) represent the
transmission probability for three different values
of the opening of the diaphragms w = 5.8, 8.8, and
15.8 mm, respectively. Note the remarkable degree
of agreement between the measured and the
calculated data with only the absorption constant
Kk as an adjustable parameter. In Fig. 3a where
w/d ~ 0.37, transport is suppressed and mediated
only by resonant scattering with narrow Breit—
Wigner shapes centered at the eigenenergies of the
closed billiard as indicated by the tick marks. With
increasing diaphragm opening (Fig. 3b) transport
acquires a significant non-resonant contribution,
leading to the widening and the overlap of
resonances. Finally, for fully open leads (Fig. 3c),
w/d =1 (or s~ 0) resonances appear as narrow
window resonances in a non-resonant continuum.
The trajectory of the resonance parameter as a
function of s can be both experimentally and
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Fig. 3. Total transmission probability, | T'(v/2ed/m, w/d)|?, for
transport through the rectangular cavity with three different
openings of the diaphragms: (a) w/d = 37%, (b) w/d = 56%,
and (c) w/d = 100%. For better comparison, the experimental
and the calculated results are shown as mirror images. The
positions of all eigenstates in the closed cavity are indicated by
the gray tick marks. For all the calculated curves shown, a
damping constant of k = 10~*mm~" was used.

theoretically mapped out in considerable detail.
Different types of resonances can be identified by
their characteristically different resonance para-
meters. The evolution of the Fano parameter as a
function of w/d (or s) for one resonance is
highlighted in Fig. 4. The transition from a narrow
Breit-Wigner resonance via a somewhat wider
asymmetric Fano profile to a window resonance is
clearly observable.

The choice x = 10~*mm™! provides us a good
fit and an upper bound of the damping present.
Note that even a slightly larger value of
k=107 mm~! would drastically deteriorate the
agreement between experiment and theory (see
Fig. 4). In line with the value x ~ 10™*mm™"! we
obtain an imaginary part of the complex Fano
parameter for systems without time-reversal sym-
metry [24] out of our fitting procedure as
Im ¢ <0.1. We note that by using superconducting
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Fig. 4. Fano resonance near the second even excited transverse
mode at kd /n ~ 1.5095. Experimental and theoretical result for
four different cavity openings (w/d) are shown. Curves with
equal w/d-ratio are displayed in the same line style (solid,
dashed, dotted, dash-dotted). For all calculated curves a
damping factor x = 10"*mm~' was used, except for the
additional gray dashed curve shown for which x = 107> mm~!
and w/d = 0.68.

cavities k could still be further reduced [30],
however, with little influence on the result, since
we have already nearly reached the fully coherent
limit.

4. Evolution of Fano parameters

Following the parametric evolution of a large
number of resonances yields a characteristic
pattern of Fano resonance parameters (Fig. 5a,b).
Obviously, two distinct subsets of resonances
appear in the rectangular billiards: one set is
characterized by a strictly monotonic increase of
I' with increasing opening of the cavity and a large
and only weakly dependent asymmetry parameter
q. A second set of resonances features a strongly
varying ¢ (on the log-scale!) from large values near
the Breit—Wigner limit to values close to ¢ &~ 0 for
wide opening, yielding a window resonance. At the
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Fig. 5. (a) Resonance width I' and (b) real part of the
asymmetry parameter |Re(q)| as a function of the diaphragm
opening w/d. The data are obtained by fits to experimental
results. Solid circles e (empty triangles A) correspond to
resonances originating from the first (second) even cavity
eigenstate. Typical wavefunctions [if(x, y)|* for these two classes
of resonances are shown in (c). In (a) the width I' of the e-
resonances is monotonically growing until resonances disappear
in the background of the measured spectra (see gray horizontal
bar). For A-resonances I reaches a local maximum and slightly
decreases for w/d — 1. In (b) the e-resonances always have a
|Re(g)| > 10, above which the Fano resonances are very close to
the Breit-Wigner lineshape [Re(q) = oo]. For the A-resonances
g shows a strong w/d-dependence: resonances undergo a
complete evolution from Breit-Wigner to window type as w/d
varies between 0 and 1.

same time, the width I' first increases with w/d
increasing from close to 0, then reaches a local
maximum and finally decreases slightly when
w/d — 1. A similar non-monotonic behavior of
I' was recently observed in a single-electron
transistor experiment [9]. Such features can be
understood in terms of avoided crossings in the
complex plane [17,18] between interacting reso-
nances. While the von Neumann—Wigner theorem
[31] for bound states predicts avoided crossings
between states of the same symmetry and thus a
non-monotonic variation of the eigenenergy,
interacting resonances can also display avoided
crossings on the imaginary axis [17,18], i.e.
exchange of the width of resonances and thus
leading to a non-monotonic behavior of one of the
I' involved. The two resonance poles approach
each other in the complex energy plane and
undergo an avoided crossing as a function of the
coupling parameter s. As a result, for increasing s
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the width of the resonance with large I' gets even
larger and will form a background, on top of which
the second narrowed resonance is situated. This
somewhat counterintuitive stabilization and nar-
rowing of the width of one resonance despite an
increased opening, i.e. an increased coupling to the
environment, is sometimes referred to as ‘“‘reso-
nance trapping” [19,20] and in the limit of I' ~ 0 as
the “formation of bound states in the continuum”.
This mechanism could possibly provide an alter-
native explanation for the results of Ref. [9], where
such a non-monotonic behavior was observed and
has been previously attributed to increased im-
purity scattering [24]. A very interesting feature of
interacting resonances is the fact that they can be
directly related to scattering wavefunctions (see
Fig. 5c). Resonances that undergo a complete
evolution from a Breit-Wigner to a window
resonance are all associated with the second even
excited state in the cavity, while resonances that
display a strictly monotonic increase of the width
with increasing cavity opening are connected to
transport through the transverse ground state
of the cavity. This mapping is controlled by the
amplitude p for transmission through the first
transverse mode (see Egs. (3) and (4)). In the case
that p>>1/2 all resonances associated with the
first mode are broader than the resonances
associated with the excited state and vice versa
for p*<1/2. For geometric reasons the scat-
tering device studied here (Fig. 1) always favors
transport through the first cavity mode and there-
fore p?>>1/2. We thus arrive at the remarkably
simple result that all resonances associated with
the first mode feature a strictly monotonic I" and a
large, but weakly varying ¢, while all resonances
associated with the second mode feature a smaller
and non-monotonic I' with ¢ undergoing the
complete evolution from the Breit—Wigner to the
window limit. This one-to-one mapping is also
indicated in Fig. 3, where only second-mode
resonances (indicated by the long tick marks)
“survive” the transition of w/d — 1 while all
first-mode resonances (short tick marks) vanish in
the background of the transmission spectrum. This
knowledge could be very useful for the investiga-
tion of electron dynamics in mesoscopic scattering
systems where the parametric evolution of Fano

resonances could yield information about the
interaction of internal states and their coupling to
the environment.

5. Resonance poles in the complex plane

As discussed above, the transmission amplitudes
for scattering through the rectangular cavity can
be parametrized in terms of six independent
parameters [26] (provided that no dissipation is
present). By evaluating the resulting expression for
the transmission probability |7(kg)|> at complex
values of the Fermi wavenumber kr we can
explicitly investigate the resonance poles in the
complex plane and their dynamics as a function of
the diaphragm opening. Inspired by the work in
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Fig. 6. The calculated kp-dependence of transmission through
the rectangular cavity (without dissipation). The diaphragms
are successively closed: (a) s =0, (b) s = 0.29, (c) s = 0.68, and
(d) s=0097. The upper half of each figure shows the
transmission probability |T(kg)> on the real kp-axis. The
lower half depicts contour plots of the transmission probability
|T(kg)) in the complex kg-plane. Poles and zeros in transmis-
sion move in the kg-plane as a function of the opening of the
diaphragms. Two of the zeros and four of the poles in (a) are
marked by arrows.
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Refs. [32,33] we calculated contour plots of the
transmission probability |7(kg)|? in the complex
kg-plane, displayed in Fig. 6. In general we can
associate with every resonance in the transmis-
sion probability |7T(kg)|> a pair of poles for
|T(kg)|* in the complex kg-plane and a point on
the real kg-axis where |T(kg)|* goes to zero. For
full opening of the diaphragms (s &~ 0) the complex
poles and the points where the transmission
probability goes to zero occur at the same Re(k),
thus giving rise to almost symmetric resonances
(see Fig. 6a). When gradually closing the dia-
phragms, the poles are situated at a Re(k) which is
different from the position of the “zero” on the
real axis. Such a configuration gives rise to
asymmetric Fano resonances (see Fig. 6b,c). If
the diaphragms are almost shut (s ~ 1), we are left
with poles situated very close to the real k-axis (see
Fig. 6d). In line with this observation, the resul-
ting resonances are very narrow and isolated from
each other.

6. Decoherence: dephasing versus dissipation

Decoherence in an open quantum system can be
caused by different mechanisms: dephasing and
dissipation. Both of them are contained in the
relaxation operator in a quantum Liouville equa-
tion. Decoherence in the microwave scattering
device is caused by dissipation, i.e. the absorption
of microwave energy by the walls. As discussed
above, the absorption constant can be extracted
from the shape of the Fano profile in terms of a
complex ¢ parameter. The good agreement with
theory allows to accurately determine the degree of
damping and thus of decoherence present in the
experiment. As the Fano profile, in particular near
its minimum, is very sensitive to any non-interfer-
ing incoherent background, we can determine an
upper bound for the damping by comparison
between experiment and theory to Dbe
k<107*mm~!. The consistency of this approach
can be checked by an independent calculation of
the absorption via the skindepth 6. The cavity in
the experiment is made out of oxygen-free copper
(DIN 1787:SF-Cu) with a density p ~ 8.9 kg/dm~3
and a conductivity ¢ ~ 4.9 x 10*Ohm~'mm~" at

room temperature. The skin depth is given by [29]
1
Jomuy’
with v being the microwave frequency and u the
susceptibility of the metal, u= pj= 471077 Vs
(Am)~'. The quality Q of a resonator is defined
as the ratio of the eigenfrequency v to its width Av.
The Q can be calculated as [29],
uwH 1
to 0 2 x (14 E(CH/4A))’

o=

(6)

Q:

@

where the height H, the circumference C, and
the area A of the cavity enter explicitly. The
constant ¢ is a geometrical factor close to unity.
For the frequency range used in the experiment
we find a frequency width Av =v/Q ~2.5MHz.
Note that this width originates purely in the
absorption of microwaves in the cavity walls, as
opposed to the resonance broadening caused
by the openness of the diaphragms. In line with
this result, we find that the above frequency
width of 2.5MHz corresponds very well to the
resonance width in the case of small diaphragm
opening (i.e. w/d <30%), where resonances take
on the Breit-Wigner lineshape. The Fourier
transform of this resonance form is an exponen-
tially decaying function in coordinate space,
the decay constant of which is given by x. We
can therefore directly determine x = Av x n/c,
where ¢ is the speed of light. This finally yields
the estimate x ~2.7 x 10> mm~'. The value
obtained from the fit of the Fano resonances
is somewhat larger (kx~ 1 x 10™*mm~!), which
is probably due to additional absorption in
the leads.

It has been shown in Ref. [24] that Fano
resonances acquire an imaginary g¢-parameter
under the influence of dephasing. Our results
presented here clearly indicate that dissipation
has the same interference-reducing (i.e. decoher-
ing) effect on a Fano resonance as dephasing does.
In order to illustrate the equivalence of the
decohering effect of dephasing and dissipation on
Fano resonances we simulate dephasing in the
cavity explicitly and compare with results on
dissipative transport. Whereas absorption of
microwaves is included in our model by adding
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to the real wavenumber in longitudinal direction

an imaginary part, k, = \/k> — (kf,)2 +ix, the

effect of dephasing is taken into account in the
following way: For each of the traversals of the
cavity in the multiple scattering expansion of
Eq. (1) a Gaussian distributed random phase
¢.an € R 1s added to the longitudinal wavenum-

bers, k, = \/k* — (k;')2 + ¢4n appearing in the

constant energy propagators G® and GRD,
The degree of dephasing is controlled by the width
of the Gaussian distribution. The numerical data
for transmission are then averaged over a large
ensemble of different realizations of the random
phase.

Note that dephasing, as well as dissipa-
tion, causes the unitarity of the scattering pro-
cess to be violated. Dissipative absorption of
microwaves in the cavity walls leads to a net loss
of microwave radiation in the system with
U(k) = |T(k)|> + |R(k)|><1, dephasing causes
U(k) to fluctuate around the unit value. For a

dissipation

dephasing

T T T T T T T T T T T 1
1.30 135 140 145 150 155 1.60
mode number n=kd /=

Fig. 7. Renormalized transmission probability, |7(v2¢d/n,
w/d)|>/U(v/2¢ed/n,w/d), for transport through the rectangular
cavity under the influence of dissipative and dephasing
mechanisms, respectively. Opening ratio of the diaphragms
w/d = 56%. Above the horizontal axis curves with different
dissipation constants x are shown: x=0,5,11,17,28x
10~*mm~". The data below the axis contain a random phase
factor for each longitudinal crossing of the cavity. The depicted
curves feature each a different variance Ak of the Gaussian
random phase distribution: Ak =0, 11,20, 28,45 x 10~* mm~*.
Note that both decohering mechanisms have a very similar
effect on the Fano resonances.

meaningful comparison we enforce unitarity
simply by renormalizing the transmission and
reflection  probabilities explicitly, |7T(k)]> —
IT(k)I>/U(k) and |R(k)]> — [R(K)]*/U(k). We
note that rigorous methods for restoring unitarity
in open decohering quantum systems are available
for both time-independent [24] and time-depen-
dent systems [34]. Fig. 7 illustrates that dephasing
and dissipation indeed have a very similar effect on
the evolution of Fano resonances and therefore
yield complex values of the g-parameter. One
conclusion we draw from this finding is that,
however useful Fano resonances are as a means to
analyze the decoherence present in a scattering
process, they do not allow to distinguish between
different mechanisms leading to decoherence.

7. Summary

In summary, the rectangular microwave cavity
attached to two leads allows to study the interplay
between resonant and non-resonant transport in
unprecedent detail. By a controlled change of the
opening, tuning a Fano resonance from the
Breit-Wigner limit to the window resonance limit
has become possible. Fano resonances can be used
to accurately determine the degree of decoherence
present in a scattering device. We show that
dephasing and dissipative mechanisms have very
similar effects on the evolution of Fano reso-
nances. The non-monotonic behavior of resonance
parameters can be related to avoided crossings
between interacting resonances, which can be
unambiguously associated with different resonant
modes of the cavity. The latter feature is a
consequence of the separability of the wavefunc-
tion in the closed cavity. Future investigations
along these lines for non-separable chaotic cavities
promise new insights into the resonance dynamics
of open chaotic systems.
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