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We present realistic simulations of quantum confinement effects in phase-coherent graphene quantum dots
with linear dimensions of 10–40 nm. We determine wave functions and energy-level statistics in the presence
of disorder resulting from edge roughness, charge impurities, or short-ranged scatterers. Marked deviations
from a simple Dirac billiard for massless fermions are found. We find a remarkably stable dependence of the
nearest-neighbor level spacing on edge roughness suggesting that the roughness of fabricated devices can be
possibly characterized by the distribution of measured Coulomb blockade peaks.
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I. INTRODUCTION

Graphene,1,2 the first true two-dimensional �2D� solid, is
attracting considerable attention, mostly due to unique dy-
namics of electrons near the Fermi energy which closely
mimics that of a massless Dirac Hamiltonian �see Fig. 1�a��.
Moreover, the double cone structure near the K and K� points
of the sublattices in reciprocal space gives rise to a “pseu-
dospin” degeneracy, suggesting an analogy to Dirac four
spinors. Envisioned applications range from high-mobility
nanoelectronics,3 spin qubits in graphene quantum dots,4 and
the creation of “neutrino” billiards.5,6 Dirac �including neu-
trino� billiards receive growing interest as a complement to
classical and quantum �Schrödinger� billiards, which have
taken central stage in studies elucidating the quantum-to-
classical crossover in both regular and chaotic devices.
Quantum billiards are the paradigm for simple Hamiltonian
systems featuring complex dynamics.7 Additionally, spin co-
herence times in graphene are expected to be very long due
to weak spin-orbit and hyperfine couplings8–10 making
graphene quantum dots a promising candidate for future spin
based quantum information processing.4 However, confining
electrons in graphene is a challenge due to the gapless elec-
tronic structure and the Klein tunneling paradox.11,12 This
difficulty has recently been overcome by structuring 2D
graphene, and certain quantum-mechanical confinement ef-
fects have been observed in nanoribbons,13–18 interference
devices,19 single electron transistors,3,20,21 and graphene
quantum dots.6,22

In the following we present realistic simulations for
single-particle spectra of graphene quantum dots �i.e., bil-
liards� by explicitly considering rough edges and disorder.
This work was motivated by recent advances in fabricating
dots with linear dimension d ranging from a few hundred
nanometers down to about 40 nm, and determining their
nearest-neighbor energy-level spacing distribution.6,21 We
analyze dot wave functions, the density of states �DOS�, and
the nearest-neighbor spacing distribution �NNSD�. We ad-
dress the question to what extent the electron spectra now
experimentally accessible via measurements of Coulomb
blockade peaks reveal information on the roughness and size
of the graphene quantum dot. To put it provocatively: Can

one “hear” the rugged shape of a drum if it is made of a
graphene flake?

II. METHOD

We investigate graphene dots with linear dimensions be-
tween 10 and 40 nm, containing between 6000 and 75 000
carbon atoms. This size agrees with currently fabricated
devices.6 The shape is chosen to represent a classically regu-
lar structure in the absence of edge roughness. One motiva-
tion of this choice was the remarkable result5 that a Dirac
neutrino billiard, in sharp contrast to a Schrödinger billiard,
would feature chaotic dynamics. We neglect inelastic scatter-
ing inside the dot. This is justified as the inelastic mean-free
path �il found in experiment exceeds the linear dimension
d��il�400 nm.1 Our simulation allows for the inclusion of
disorder through �i� edge roughness �see Fig. 1�c��, �ii� short-
range disorder due to randomly distributed point defects in
the interior, and �iii� long-range screened Coulomb distortion
due to charge deposition in either the substrate or the flake.
Rough edges are simulated by modulating the boundary of
the dot by steps of height ��w and length ��l randomly
chosen from the interval �0,�W�, �W�d. We refer to �W
as the amplitude of edge roughness which varies between 0.3
�weak disorder� and 2 nm �strong disorder�. The resulting
piecewise straight edge features alternating zigzag and arm-
chair sections �see Figs. 1�b� and 1�c��. We describe impuri-
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FIG. 1. �Color online� �a� Graphene dispersion near K and K�
points of the infinitely extended sheet. �b� Rectangular segment of a
graphene flake, vertical edge armchair, and horizontal edge zigzag
terminated. �c� �Approximately� rectangular quantum dot with
rough edges.

PHYSICAL REVIEW B 79, 115423 �2009�

1098-0121/2009/79�11�/115423�6� ©2009 The American Physical Society115423-1

http://dx.doi.org/10.1103/PhysRevB.79.115423


ties and defects in the flake by positioning either long-range
�V�r�=V0e−��r−r0��, with �−1 larger than the lattice spacing, or
short-range �V�r�=��r−r0�� scatterers at randomly selected
lattice sites r0. We use impurity densities for short-range �nD�
and long-range �nC� scatterers of ni�1.8	10−3 impurities/
carbon �10–100 defects per flake�, as estimated by recent
work.23

The spectrum of the graphene quantum dots is determined
by employing a Lanczos algorithm24 giving the 500 eigen-
states closest to the Fermi edge. The graphene flake is de-
scribed by a third nearest-neighbor tight-binding approxima-
tion to correctly reproduce the graphene band structure.25

The modified C-C bond length at the flake boundary is ac-
counted for by increasing nearest-neighbor coupling to the
outmost carbon atoms by 12% in accordance with recent ab
initio density-functional calculations.26 Our ensemble aver-
ages for the DOS �
��= �	i��E−Ei��� encompass typically
5000 disorder realizations �.

III. DENSITY OF STATES

The linear dispersion relation of a massless Dirac particle
implies a DOS linear in �,


��� =
1

2�vF�2d2��� , �1�

where d=
4WL /� is the effective diameter of a dot with
area WL and � is measured relative to the conical intersec-
tion �Fig. 1�a�� assumed to coincide with the Fermi edge. The
simulated DOS for the quantum dots display marked devia-
tions from Eq. �1�. For weak disorder pronounced size quan-
tization peaks appear �see, e.g., vertical arrow in Fig. 2�a��.
Their positions are determined by the smallest linear dimen-
sion of the flake.27 We have investigated both cases W�L
�W�L�, and find the same qualitative behavior. In the fol-
lowing, we assume W�L. Note that width �W� and length
�L� of the rectangular flake are not strictly equivalent as the
vertical boundary features an arm-chair border while the
horizontal forms a zigzag border. The distance between the

size quantization peaks is �E=vF� /W�1.5 /W�eV�, with
the width W given in nanometer. This yields a prediction for
the energy separation of 0.1 eV for the peaks in Fig. 2. Weak
disorder, i.e., small edge roughness, can induce coupling be-
tween the cones at K and K� �Fig. 1�a��. This manifests itself
by a fine structure of size quantization peaks by lifting the
degeneracy �inset of Fig. 2�a��. The quantum confinement
peaks in the graphene dot are enhanced compared to a cor-
responding Schrödinger billiard of the same geometry in part
because of both the altered dispersion relation and the addi-
tional degeneracy. Strong edge disorder smears out size
quantization patterns and the DOS begins to resemble that of
a zero-mass Dirac fermion in free space �Eq. �1��. Only when
the edge roughness can be limited to the subnanometer scale
does quantized conductance in graphene nanoribbons
persist.15

Even in the limit of strong disorder, the prominent peak in
the DOS near the Fermi edge remains unchanged �see hori-
zontal arrows in Fig. 2�c��. A direct look at the wave function
�Fig. 3�a�� reveals its origin: a large number of strongly lo-
calized states at the zigzag edges of the graphene flake. Sur-
face states at the zigzag edges are well known from transport
through graphene nanoribbons.28 The additional inclusion of
edge roughness leads to exponential �Anderson-type� local-
ization along the flake boundary, as a fit to our data confirms
�not shown�: each eigenstate features a nonvanishing ampli-
tude only at a few �not always spatially connected� carbon
atoms, with a decay length into the bulk of typically 0.5 nm
�see arrows in Fig. 3�a��. A similar effect was observed in
transport, where edge roughness leads to Anderson localiza-
tion in scattering states.29 In contrast, for straight zigzag
edges �i.e., no edge disorder� eigenstates extend over many
lattice constants along the flake boundary without localiza-
tion parallel to the edges. We find that the eigenenergies of
localized states are extremely sensitive to the site energies at
the corresponding lattice sites. This agrees well with the ex-
perimental observations of sharp resonance in the electron
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FIG. 2. �Color online� Ensemble-averaged density of states
�
�E��� of graphene quantum dots with increasing edge roughness,
see different values for �W in the subfigures. The size of all devices
is equal, d=20 nm �20 000 atoms� and their width W=16 nm.
Dashed lines indicate the averaged linear DOS for Dirac billiards
�see Eq. �1��. The inset shows the K−K� splitting of 12 meV.
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FIG. 3. �Color online� Eigenstates of graphene quantum dots
with dot area of about 225 nm2 �13 000 carbon atoms, fewer than
in Fig. 2, for demonstration purposes only�. Eigenenergies are �a�
65, ��b� and �c�� 220, �d� 650, �e� 300, and �f� 1020 meV, respec-
tively. Eigenstates for edge roughness �at constant �W=1 nm, �a�–
�c��, short-range impurities �nD=0.003 in �e�, white dots mark the
impurity center�, and long-range impurities �nC=0.005 in �e�� are
shown.
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transport through graphene constrictions.20 We expect that
different functional groups �e.g., H− or OH−� attached to the
outermost carbon atoms may strongly influence the local
DOS and the position of this localization peak relative to the
Fermi edge.

Delocalized states contributing to the size quantization
peaks show pronounced features well beyond the simple pic-
ture of a confined zero-mass Dirac particle. While the trans-
verse quantization resembles that of a conventional conduc-
tor, the interference pattern in the electron probability density
���2 �Fig. 3�b�� results from the simultaneous presence of
multiple wavelength scales for the cone near the K point
�unlike wave functions near the � point� in k= �k0
+vF� /L ,vF� /W�: parallel to armchair edges �i.e., in vertical
direction in Fig. 3�, the wavelength is of the order of twice
the width of the ribbonlike dot �32 nm. Parallel to zigzag
edges �i.e., in horizontal direction in Fig. 3�, the wave oscil-
lations are much shorter with a typical wavelength of 0.7 nm
�see Fig. 3�c�� resulting from beating �frequency ratio 3:2�
between lattice periodicity a=0.24 nm and the characteristic
wavelength �0=2� /k0�0.37 nm, where k0�vF� /L is the
distance between � and K points in reciprocal space �see Fig.
1�a��. We find beating patterns with this characteristic length
scale to be universally present in all delocalized states, even
in the presence of long-range disorder. Only because of the
subnanometer length scale of �0 at the K point is the
graphene dot sensitive to edge roughness and disorder on a
length scale of a few nanometers, in contrast to a Dirac cone
at the � point. In momentum space, the wave function for the
lowest transverse quantum number shown in Fig. 3�b� is dis-
placed relative to the K point �k0 ,0� in kx direction �as op-
posed to the directions rotated by 60° and 120°,
1
2 �k0 , �
3k0�, see Fig. 1�a�� because of the alignment of the
zigzag �armchair� edges parallel �orthogonal� to the �k0 ,0�
direction. However, all three directions appear for higher
transverse quantum numbers, resulting in enhancements
along the three zigzag directions of the lattice �i.e., horizon-
tal, 60°, and 120°, see dashed lines in Fig. 3�c��. As a con-
sequence, eigenstates feature a 2D hole �“swiss-cheese”� pat-
tern emerging from the interference of plane waves rotated
by 60° relative to each other �see Figs. 3�e� and 3�f��.

IV. NEAREST NEIGHBOR SPACING DISTRIBUTION

In order to delineate the influence of disorder and edge
roughness on the energy-level statistics, we have determined
the NNSD, P��E�, i.e., the probability that the energy dif-
ference between two adjacent energy levels is �E, for differ-
ent amplitudes �W of roughness. Within the framework of
nonrelativistic quantum dynamics of Schrödinger billiards,
P��E� follows a Poisson distribution for separable �classi-
cally regular� shapes while it should display a Wigner-Dyson
�or Gaussian orthogonal ensemble �GOE�� distribution for
irregularly shaped �classically chaotic� billiards. Schrödinger
billiards refer to the quantum dynamics of a free particle with
constant potential inside hard wall boundaries. By contrast,
even rectangular shaped Dirac neutrino billiards have been
shown to feature a Gaussian unitary ensemble �GUE� distri-
bution because the chiral symmetry found in neutrino bil-

liards breaks time-reversal symmetry.5 After spectral unfold-
ing �s= 
̄��i�, with �P�s��=1 and �sP�s��=1�, we find for the
ideal rectangular graphene dot ��W=0� a near-perfect Pois-
son distribution �see Fig. 4�a��. By gradually increasing ei-
ther the edge roughness or the defect concentration, the dis-
tribution smoothly evolves into a Wigner-Dyson-like
statistics �see Figs. 4�b� and 4�c��. Clearly, such a behavior
reflects the conservation of time-reversal symmetry in
graphene quantum dots. The limiting cases of Poisson and
Wigner-Dyson GOE ensembles describe our numerical data
very well without the need to resort to ensembles for systems
with additional symmetries.30 We surmise that the reason for
this is the breaking of the sublattice symmetry at the edges of
the flake. This applies even to the case of �W=0, as either A
or B type atoms make up the outmost atom of the zigzag
edges.31 As a consequence, properties of neutrino billiards
relying on the chiral symmetry do not apply to etched �or
cut� graphene islands,32,33 in agreement with very recent in-
vestigations comparing graphene flakes with smooth bound-
ary conditions to flakes terminated by sharp edges.34 Among
the distribution functions suggested for the transition regime
for classically mixed phase space,35–39 we achieved the best
fit for the disorder parameters and geometries investigated by
using the two-parameter Hasegawa distribution40

PH�s;�,�� = N

se−
s−��
s�2/2



2s2e−�2
2s2
+ �2e−2
s

, �2�

where 
 and N are determined by the normalization condi-
tions �PH�= �sPH�=1.40 While the control parameter � de-
scribes the transition from Poissonian ��=0� to Wigner-
Dyson statistics ��→��, � is a system-specific constant.
Indeed, we find �=0.75 to correctly reproduce our numeri-
cally obtained NNSD for different values of both edge
roughness as well as scatterers �see Figs. 4�a�–4�c��. A strong
edge roughness of 2 nm �or impurity concentration nD=5
	10−3, nC=2	10−2� is required to reach the chaotic limit,

(a) ∆W = 0

0

0.4

P (s)

0.8

G G

(b) ∆W = 0.4 (c) ∆W = 1.2

G

0

0.4

P (s)

0.8

0 1 2 3s(d) ∆W = 0

S

0

0.4

P (s)

0.8

0 1 2s

(e) ∆W = 0.4

S

0 1 2 3s

G

S

Graphene-billiard

Schrödinger-b.

Hasegawa

Poisson

Wigner-Dyson

FIG. 4. �Color online� NNSD P�s� of different billiards: rectan-
gular graphene flake with �a� smooth edges ��=0.07�. �b� Finite
edge roughnesses �W=0.4 nm ��=0.8� and �c� �W=1.2 nm ��
=2.5�. ��d� and �e�� Schrödinger billiards with same edge roughness
as �a� and �b�. The solid curve in �a�–�c� shows fits to the Hasegawa
distribution. Dashed �dotted� lines show a Wigner-Dyson �Poisson�
statistics as guide to the eye.
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i.e., Wigner-Dyson NNSD statistics. For higher disorder con-
centration, recent results for disordered carbon nanotubes
suggest a return to Poisson statistics due to the onset of
Anderson localization.41 Remarkably, for moderate values of
the edge roughness amplitude ��W=0.4 nm�, a Schrödinger
and a graphene billiard of the same geometry display a mark-
edly different NNSD �Fig. 4�: while the Schrödinger billiard
has already reached the Wigner-Dyson limit ��→��, for the
graphene the NNSD still is closer to the Poisson limit, point-
ing to the unique spectral properties of graphene.

To further elucidate the evolution of the quantum dynam-
ics in graphene-based nanostructures as a function of disor-
der, we investigate the distribution of eigenstates, i.e., the
distribution of values � and �ª ���2. In the GOE limit, the
former follows a Gaussian distribution

P��� =
1

�
e−��2/��, I��� = �

−�

�

P���d� = erf
�


�
, �3�

while the latter is described by the Porter-Thomas
distribution42

P��� =
1


2��
e−��/2�, I��� = erf
�

2
, �4�

originally suggested to describe the distribution of resonance
widths �i.e., transition probabilities� in nuclear reactions. For
graphene billiards, we find a slow convergence toward the
random matrix theory �RMT� predictions for the GOE en-
semble in the distributions for � �see Fig. 5�a�� and � �see
Fig. 5�b��, in line with the slow convergence of the NNSD to
the GOE limit.

The reason for the increased stability of graphene-based
devices against transition to the GOE limit is closely related
to the electronic structure of graphene at the K points �Fig.

1�a��. In a classical rectangular ballistic billiard with only
rectangular edges �Figs. 1 and 4�d��, an additional constant
of motion, the magnitude of the linear momentum �k�, exists.
Such billiards are therefore classically �pseudo� integrable,43

and do not feature chaotic dynamics irrespective of the num-
ber or size of the edges. Consequently, Schrödinger billiards
in the limit of small deBroglie wavelength feature pseudo-
Poissonian statistics. By contrast, for wave numbers near the
� point, the large wavelength cannot resolve the exactly rect-
angularly shaped edges, and tend toward the Wigner-Dyson
statistics. For the same size of the edges �W, the graphene
eigenstate features a much shorter wavelength due to the
position of the Dirac cone near the K point in the Brillouin
zone. The quantum dynamics of the graphene billiard is
therefore closer to the classical limit and its level statistics
closer to the Poisson limit of regular dynamics.

Of potential technological significance is the dependence
of the NNSD on the disorder in graphene billiards which
might be used as a quantitative indicator of its strength. For
all three classes of disorder �edge roughness, short-range,
and long-range disorders�, we find a linear relation between
the NNSD parameter � and the edge roughness amplitude,
��2�W, and between � and the density of short-range �
�0.7nD, as well as long-range defects ��0.2nC �Fig. 6�a��.
As � can be obtained with high precision from a fit to P�s�,
the edge roughness or defect density can be deduced from
the NNSD if the distribution is �approximately� Poisson-type
in the limit �W=0 �nD=0�. We suggest that this dependence
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FIG. 5. �Color online� Integrated distribution functions I��� of
values �a� � �see Eq. �3�� and �b� � �see Eq. �4��, for increasing
values of edge disorder as labeled in the figures. Each subfigure
shows ensemble averages over 50 000 values of � for 20 different
eigenenergies �corresponding to the different curves�. The inset
shows the corresponding distributions. The blue solid line shows
the RMT predictions for the GOE case �see text�.
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could be used to estimate the disorder in experimentally re-
alized regularly shaped phase-coherent graphene quantum
dots. Numerically, we find ��4 in a fit to data from recent
experimental investigations of a 40 nm graphene billiard,6

corresponding to an effective roughness �We�2 nm, or an
effective �short-range� defect rate nD�5.5	10−3 �see black
triangles in Fig. 6�. As the second moment,

� = �s2P�s���, �5�

of the NNSD decreases with increasing disorder, one could
alternatively obtain an estimate for the roughness of a flake
from �. We find, however, that the dependence on � is more
reliable, as the entire distribution is used for a fit to PH �see
Fig. 6�b��.

While the shape of the unfolded NNSD, P�s�, is sensi-
tively dependent on disorder, it is, to a good degree of ap-
proximation, size independent, as our numerical data confirm
�see Fig. 6�c��. Note that the normalization �sP�s��=1 scales
out size-related effects. By contrast, the absolute level spac-
ing ��E� contains direct information on the size of quantum
confinement. By rescaling each level spacing by the local
energy, relative to a fixed energy E0=100 meV, one obtains
the size dependent �but almost energy independent� expecta-
tion value

�̄ = ��E
E

E0
 = �vF�2 2

d2E0
=

5500 nm2

d2 meV. �6�

This rescaled mean-level spacing is, indeed, independent of
edge roughness and disorder �see Fig. 6�d��. Note that, in

spite of the large contribution of localized states near the
Fermi edge, the mean-level spacing accurately follows Eq.
�6�. To achieve agreement with Eq. �6� we have included in
the ensemble the states up to 1 eV away from the Fermi
edge. The increased spacing of the more distant levels offsets
the clustering of the localized levels near the Fermi edge.
Agreement with the experimental data6 for d=40 nm is sur-
prisingly good.

V. CONCLUSIONS

In conclusion, the spectrum of realistic graphene quantum
dots in the presence of disorder �edge roughness or defects�
reveal unique features which differ from both Schrödinger or
Dirac billiards of confined massive or massless free particles.
The graphene band structure near the K points leaves clear
imprints. They include interference structures in the wave
functions, enhanced confinement effects, and a delayed tran-
sition from Poisson to Wigner-Dyson nearest-neighbor distri-
butions. While one still “cannot hear the imperfect shape of
the drum,” the size and roughness of graphene quantum dots
can be, indeed, inferred from the spectral properties.
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