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Vibrational Properties of Boron–Nitride Nanotubes:
Effects of Finite Length and Bundling

Ludger Wirtz and Angel Rubio

Abstract—We present ab initio calculations of phonons in
single-wall boron–nitride (BN) nanotubes. Raman and infrared
(IR) active modes of isolated and infinitely long tubes are evaluated
according to the nonsymmorphic rod groups of BN nanotubes.
For tubes of finite length, the selection rules are less restrictive
and give rise to additional modes, which may be observed in
Raman and IR spectroscopy with an intensity depending on the
tube length. Bundling of tubes is shown to have little effect on the
phonon frequencies. However, arranging tubes in a large periodic
array (larger than the wavelength of incoming light) gives rise to
a strong frequency shift (longitudinal-optical–transverse-optical
splitting) of certain modes due to the establishing of a macroscopic
electric field. Modes of 1 symmetry experience a shift for laser
light along the tube axis and 1 modes are split for light incidence
in the perpendicular direction.

Index Terms—Boron–nitride (BN) nanotubes, infrared (IR)
spectroscopy, phonons, Raman spectroscopy.

I. INTRODUCTION

BORON nitride (BN) is isoelectronic to carbon and
displays—among others—a graphite-like hexagonal

phase (h-BN), which has been extensively studied by various
spectroscopic methods [1]–[6]. The elastic constants are very
similar (although smaller), but the polar nature of the BN
bond leads to significant changes in the electronic structure of
h-BN as compared to graphite. While graphite is a semimetal
(zero bandgap in the single sheet), h-BN has a large bandgap
of approximately 5.5 eV [3]. Furthermore, its high thermal
stability and relative chemical inertness distinguishes it from
its carbon counterpart.

The structure of a carbon nanotube can be explained by
rolling up a single graphene sheet. It is natural to do the same
with a single hexagonal BN sheet and construct a BN nanotube,
which is isoelectronic to C nanotubes, but should carry over
some of the characteristic differences of h-BN with respect
to graphite. Indeed, tight-binding [7] and first-principles cal-
culations [8] demonstrated that BN tubes are stable and have
a bandgap similar to h-BN, independent of the tube diameter
and chirality. Furthermore, the bandgap is independent of the
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number of walls in multiwall nanotubes as long as the inner
diameter is above 0.8 nm.

The first synthesis of multiwall BN tubes was reported in
1995 [9]. By now, BN tubes are routinely produced in several
groups [10]–[16]. The production of single-wall BN tubes in
gram quantities [17] is a further milestone toward applications
of BN nanotubes. The as-produced samples of BN nanotubes
face the same problems as its carbon brethren. The raw product
at the end of the production process contains tubes of various
lengths, diameters, and chiralities, some of which are isolated
while others form bundles. This tube material may furthermore
be contaminated by catalyst particles and raw material from the
beginning of the production process. Further processing at this
stage requires detailed information from spectroscopy.

Several spectroscopic methods are commonly used for
the identification and characterization of nanotube samples.
High-resolution transmission electron (HRTEM) allows for a
quick view at the scene with almost atomic resolution. Scanning
tunneling microscopy/spectroscopy (STM/STS) allow to get
atomic resolution and to map the electronic structure to the
underlying nanotube geometry [18]. In optical spectroscopy,
using laser light, the spacial resolution is lost. However, alter-
native information about the band structure and the vibrational
properties of the constituents can be gained. Optical absorption
spectroscopy probes the electronic band structure by direct
excitation of an electron from the valence to the conduction
band. Since BN tubes have a wide bandgap, either multiphoton
processes or UV light are necessary for this process to occur
in BN nanotubes. Complementary information about the band
structure of multiwall BNnanotubes has recently been obtained
by electron energy loss spectroscopy (EELS) [19].

Recent spectrofluorimetric data on carbon single-wall nan-
otubes (SWNT) suspended in an aqueous surfactant combined
with Raman and optical absorption spectroscopy has been able
to provide information about tube chirality [20]. At lower en-
ergy, infrared (IR) absorption probes the direct excitation of
phonons. Finally, Raman spectroscopy probes the excitation of
phonons by measuring the frequency shift in elastically scat-
tered laser light.

We investigate the application of the latter two spectroscopic
methods (i.e., Raman and IR) for the characterization of BN
nanotubes. For carbon materials, Raman scattering is reso-
nantly enhanced because the bandgap is zero or very small and
electrons can be excited from the valence to the conduction
band. This results in a high intensity of the spectra and a sensi-
tive dependence on the laser frequency. Therefore, Raman STS
has become an accurate highly diameter-selective tool for the
characterization of carbon nanotubes [21], [22]. In BN tubes,
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Raman scattering is nonresonant due to the large bandgap of the
tubes. The resulting spectra are, therefore, weaker in intensity
and must be carefully separated from a possible overlap by
resonant Raman scattering from contaminants [23]. On the
other hand, in BN tubes, the efficiency of IR-absorption is
enhanced by the polarity of the material and gives rise to a
much more pronounced IR spectrum [24] than in the case of
carbon tubes where the IR spectra have very little structure and
can hardly be distinguished from the IR spectrum of graphite
[25].

For the interpretation of measured spectra [23], an accurate
knowledge of the phonon frequencies as a function of tube di-
ameter and chirality is indispensable. In a recent paper [26], we
have presentedab initio calculations of phonons in ideal iso-
lated infinitely long BN nanotubes. In this paper, the emphasis
lies on the effects of deviation from this ideal case, i.e., finite
tube size and occurrence of tubes in bundles. Experimentally
produced tubes have a finite length (typically between 200–400
nm [17]), which is shorter than the wavelength of IR light. In
this case, the tubes appear as very large molecules rather than
infinitely extended. This lowers the nonsymmorphic rod group
symmetry of the tubes [27]–[29] to the point-group symmetry of
a finite-size tube. Lower symmetry leads to a relaxation of selec-
tion rules and gives rise to additional “allowed” Raman and IR
active modes. The effect of bundling of tubes is difficult to treat
exactly because a super cell for a bundle of, e.g., ten tubes would
be prohibitively large. As an approximation to the bundling ef-
fect, we study, therefore, the phonon frequencies in an (infin-
itely extended) closely packed array of tubes. In this case, the
polarity of BN allows for the coupling of certain modes to a
self-induced macroscopic electric field (Lydanne–Sachs–Teller
splitting [30]), which leads to a shift of some frequencies. This
effect depends on the direction of the incoming laser light.

The structure of this paper is as follows. In Section II, we give
some details on the calculation of phonon frequencies by den-
sity-functional perturbation theory (DFPT) and compare with
other more empirical methods. The results for ideal infinitely
long tubes are summarized in Section III where an intuitive ex-
planation of the symmetry of Raman and IR active modes is
also given. In Section IV, we present the frequencies of Raman
and IR active phonon modes in tubes offinite length. In Sec-
tion V, we discuss the expected Raman and IR spectra in a peri-
odic array of densely packed tubes.

II. M ETHOD OFCALCULATION

The phonon frequenciesas a function of the phonon wave
vector are the solution of the secular equation

(1)

and denote the atomic masses of atomsand , and the
dynamical matrix is defined as

(2)

where denotes the displacement of atomin direction .
The second derivative of the energy in (2) corresponds to the

change of the force acting on atomin direction with respect
to a displacement of atomin direction as follows:

(3)

Note the dependence onof the dynamical matrix and displace-
ments. In an explicit calculation of the dynamical matrix by dis-
placing each of the atoms of the unit cell into all three directions,
a periodic supercell has to be used, which is commensurate with
the phonon wavelength . Fourier transform of the-depen-
dent dynamical matrix leads to the real space force constant ma-
trix . A phonon calculation starts with a determination
of the dynamical matrix in real space or reciprocal space (2).

Before discussing how the dynamical matrix is constructed
for BN nanotubes, it is instructive to look at how phonons have
been calculated in carbon tubes. The easiest, very intuitive, and
computationally fast approach is the use of (real space) force
constants that are fitted to experimentally measured phonon dis-
persion relations. A set of force constants up to fourth nearest
neighbor interaction was originally used to describe the phonon
dispersion relation of graphite and has also become the stan-
dard for nanotubes [31], [32]. However, the agreement between
experiment and theory is limited to certain regions in the first
Brillouin zone. Furthermore, recentab initio calculations [33],
which agree almost perfectly with the experimental dispersion
relation of graphite, have explicitly listed force constants and
demonstrated that the cutoff with the fourth nearest neighbor is
questionable. A more precise, but also more costly, alternative
to the use of a force constant approach is the explicit calcula-
tion of the dynamical matrix by tight binding (see, e.g., [34]) or
ab initio methods [33], [35]. For BN tubes, phonons have been
calculatedab initio [26] by tight-binding [36] and by a valence
shell model [37].

We have chosen theab initio approach for our calculation be-
cause the tight-binding calculations for phonons in C nanotubes
produced deviations of up to 100 cmfor the phonons in the
high-frequency regime. We use density-functional theory (DFT)
in the local density approximation (LDA) as implemented in the
code ABINIT.1 Only valence electrons are treated explicitly.
Core electrons are described by Troullier–Martins pseudopo-
tentials [38]. The wave functions are expanded in plane waves
with an energy cutoff at 40 a.u. (atomic units). Since the code
requires the use of a three-dimensional supercell, the (infinitely
long) tubes are ordered in a triangular periodic array. In order to
simulate an isolated tube, we choose a large inter-tube distance
of 14 a.u. For the simulation of the “solid of tubes,” a distance
of 6.5 a.u., which corresponds roughly to the inter-sheet dis-
tance in h-BN is chosen. The tube geometry is optimized (until
the forces acting on all atoms are smaller than 510 a.u.)
and the stress along the tube axis is minimized by adjusting the
super-cell size along the tube axis.

The second derivatives in the dynamical matrix (2) are cal-
culated in density-functional perturbation theory (DFPT) [39]
as implemented in ABINIT [40]. This means that the atomic
displacements are not performed explicitly, but treated as a per-

1The ABINIT code is a common project of the Université Catholique de Lou-
vain, Louvain, Switzerland, Corning Incorporated, and other contributors. [On-
line]. Available: http://www.abinit.org
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turbation. The equations for the first-order change in the elec-
tron density can be cast into a form similar as the Kohn–Sham
equations [41] and must be solved self-consistently (i.e., ad-
justing the Hartree and the exchange-correlation potential with
the change in density). In the case of (quasi-)isolated tubes, only
the displacement perturbation of one boron and one nitrogen
atom needs to be calculated explicitly. The residual elements
of the dynamical matrix are obtained by symmetry transforma-
tion employing the nonsymmorphic rod group symmetry of the
tubes. In the case of the close-packed tubes, the exact symmetry
is lost and all atomic displacement have to be calculated.

Since BN is a polar material where N is slightly negatively
charged and B is slightly positive, the long-range character of
the Coulomb potential gives rise to a macroscopic electric field

for longitudinal optical phonons in the limit . The dy-
namical matrix (2) must, therefore, be corrected under inclusion
of the Born effective charge tensor of the ions and the
static dielectric tensor . Both quantities can be calculated in
DFPT [39], [40] from the macroscopic electric polarization
of the medium through

(4)

where denotes the unit cell volume and

(5)

For (quasi-)one-dimensional systems like isolated tubes, no
classical macroscopic electric field can be induced through lon-
gitudinal optical phonons and the above-mentioned corrections
can be neglected. However, in Section V, it will be shown that
the effect of electric-field corrections is very strong for some
modes in large periodic arrays of tubes.

III. RAMAN AND IR ACTIVE MODES IN INFINITELY

LONG TUBES

Since the photons of IR or visible light carry a momentum,
which is negligible compared to the momentum associated with
atomic motion, only phonons with a wave vector (the “
point” in reciprocal space) can be excited in first-order Raman
and IR absorption processes. Selection rules impose a further
restriction on the number of IR and Raman active modes. Only
modes that transform under symmetry operations as a quadratic
form are Raman active and only modes that transform as a vector
are IR active. Higher symmetry leads to stricter selection rules
and thereby to a lower number of active modes. Raman and IR
active modes of carbon nanotubes have been frequently eval-
uated based on the point group symmetry of the unit cell [31].
However, Alon pointed out [27] that, for nanotube STS, the non-
symmorphic rod group symmetry of the tubes should be used.
As in solid-state spectroscopy, where the “point group in the
space group” rather than the point group of the unit cell de-
termines the selection rules, it is the “point group in the rod
group” that determines which modes are active in infinitely ex-
tended nanotubes. In Fig. 1, we demonstrate this for the case of

Fig. 1. Comparison of the point-group symmetry of the unit cell with the
space-group symmetry of the armchair BN tubes.

TABLE I
SYMMETRIES AND NUMBER OF RAMAN AND IR ACTIVE MODES IN

INFINITELY LONG BN NANOTUBES(FOLLOWING [27])

an armchair tube. The left-hand side shows the unit cell of
the tube containing atoms. (Note that the atoms at the lower
and upper boundary of the unit cell are also contained in the ad-
jacent unit cells and are, therefore, counted as “half” atoms.) It
can be easily seen that the unit cell has an-fold rotation axis
(with rotation angle ) and a horizontal reflection sym-
metry plane. Therefore, the point-group symmetry of the unit
cell is . The right-hand side of Fig. 1 demonstrates that, in
the infinitely extended tube, rotation by with a subsequent
translation by the vector maps the system onto itself as well.
The “point group in the rod group” of an armchair BN tube is,
therefore, the group. Table I summarizes the findings of
[27] for the IR and Raman active modes in BN nanotubes. It
lists the symmetry groups of armchair, chiral, and zigzag BN
nanotubes, the symmetries of the active modes, and the corre-
sponding number of modes with that symmetry. Note that for
chiral and zigzag tubes, the IR active modes form a subset of
the Raman active modes. This is different for armchair tubes,
where the two sets are disjoint.

The symmetry of the active modes can be understood intu-
itively by applying the zone-folding method [31], i.e., rolling
up a sheet into a tube. This is demonstrated for an armchair nan-
otube in Fig. 2. The left-hand side shows a part of a hexagonal
sheet, which is rolled along the direction of . The phonon
wavevector along this direction will be quantized in the tubes.
This corresponds to discrete values along the line

in the reciprocal space of the sheet (right-hand side of Fig. 2).
The point corresponds to an mode of the tube where all
equivalent atoms along the tube circumference move in phase.
Fig. 3(a) demonstrates this for the radial buckling mode. (In
the high-frequency modes, which are derived from the optical
phonon branch of the sheet, B and N atoms oscillate with a
phase difference of , while in the low-frequency modes, e.g.,
the radial breathing mode, B and N atoms oscillate in phase.)
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Fig. 2. Sketch of the zone-folding method for an(n; n) armchair nanotubes.
Left-hand side: hexagonal sheet with translation vectorT and perpendicular
phonon wave vectorK along which the sheet is rolled into a tube. This
corresponds to a quantization ofK in 2n steps in the Brillouin zone of the
sheet along the line� ! � (right-hand side).

(a) (b) (c) (d)

Fig. 3. Sketch of theA;E ;E ; andB radial buckling modes.

Fig. 4. High-frequencyA modes of a(6; 6) armchair nanotube: radial (R),
tangential (L), and longitudinal (L) modes.

The points and in Fig. 2 are equivalent and
lead to a doubly degenerate mode in the tube, which has two
nodes along the circumference [see Fig. 3(b)]. Accordingly, the
two points and correspond to a doubly de-
generate mode with four nodes along the circumference [see
Fig. 3(c)]. The construction of the modes works
analogously. The point finally leads to a nondegenerate

mode where neighboring atoms of one kind oscillate with a
phase difference of corresponding to a wave with nodes
along the circumference, as depicted in Fig. 3(d). In Fig. 4, we
show the modes of a armchair tube that are derived from
the three optical modes of the sheet at. The radial (R) buck-
ling mode stems from the optical out-of-plane (ZO) mode of the
sheet. The two optical in plane modes of the sheet [longitudinal
optical (LO) and tangential optical (TO)] lead to a mode where
the atoms oscillate in transverse—or tangential—(T) direction
and a mode with oscillation in longitudinal (L) direction. From
Fig. 4, it can also be seen that the R and T modes have even
parity, i.e., they are mapped onto themselves under inversion at
the center of the unit cell. The L mode, in contrast, has odd parity
because the direction of atomic motion changes under inversion.
For chiral and zigzag tubes, there is no inversion symmetry and
the distinction betweengeradeandungerademodes is absent. It
is this presence/absence of inversion symmetry that leads to the
above-noted fact that the IR active modes are also Raman active
in chiral and zigzag tubes, while in armchair tubes, the two sets
have no common elements.

Fig. 5. High-frequencyB modes of a(6;6) armchair nanotube.

Fig. 5 displays the modes of a armchair tube, which
are derived from the point of the three optical phonon
branches of the sheet. As in the case of themodes, the R
and T modes have odd parity and the L mode has even parity.
However, the behavior under rotation is different from the
modes. The modes are mapped onto themselves under rotation
by (corresponding to the symmetry group of the unit
cell), but they change the direction of atomic motion under the
basic symmetry operation of the nonsymmorphic rod group,
which is a rotation by accompanied by translation along
the tube axis.

The central result of ourab initio calculations is the diameter
dependence of the frequencies of Raman and IR active modes,
which is displayed in Fig. 6 for armchair and zigzag tubes. In
the right-hand-side panel, we also display the phonon dispersion
relation of the single sheet in order to illustrate the zone-folding
procedure. A detailed discussion of the results can be found in
[26]. Here, we just give a summary of the most important fea-
tures. The phonon spectrum can roughly be divided into three
regimes. The phonons in the low-frequency region are derived
from the acoustic branches of the sheet dispersion relation. With
increasing diameter, the phonon frequencies decrease as
or corresponding to the liner/quadratic slope of the longitu-
dinal acoustic (LA), transverse acoustic (TA), and out-of-plane
acoustic (ZA) branches of the sheet dispersion, respectively. It is
this strong diameter dependence that makes the low-frequency
modes, especially the radial breathing mode, prime candidates
for the diameter determination via Raman and IR STS. The
phonons in the intermediate-frequency region around 800 cm
are derived from the optical out-of-plane (ZO) branch of the
sheet. For large diameter, all three phonon modes ( and

) converge toward the frequency of the ZO mode at gamma.
This frequency is strongly present in the IR spectra of multi-
wall BN tubes [24]. The high-frequency regime (above 1200
cm comprises the phonon modes derived from the LO and
TO branches of the sheet. The L modes converge monotonously
increasing toward the asymptotic value at 1382 cm, while the
T modes display a strong nonmonotonic behavior and approach
the asymptotic value from above, corresponding to the strong
over-bending of the LO branch in the dispersion relation of the
sheet.

IV. RAMAN AND IR ACTIVE MODES IN TUBES

OF FINITE LENGTHS

If the tubes are shorter than the wavelength of incident laser
light, the tubes appear as long molecules rather than as infinitely
extended systems. In this section, we discuss the implication of
the finite length for the number of Raman and IR active modes.
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Fig. 6. Phonon frequencies of Raman and IR active modes of infinitely long zigzag and armchair BN nanotubes as a function of the tube diameter. The lines
denote the result of the zone-folding method (compare to the dispersion relation of the single sheet in the right-hand-side panel). The symbols are the result of
ab initio calculations for selected tubes. The shape of the symbols characterizes its symmetry (see legend in the inset) and the shading in black, white, or gray
distinguishes between modes that are Raman active, IR active, or both Raman and IR active, respectively.

TABLE II
SYMMETRIES AND NUMBER OF RAMAN AND IR ACTIVE MODES IN FINITE

LENGTH AARMCHAIR AND ZIGZAG BN NANOTUBES. (NUMBER OF

CENTRAL FREQUENCIES, i.e., FOR MODES WITH LONG

WAVELENGTH ALONG THE TUBE AXIS.)

For the symmetry analysis, we assume that the ends of the tubes
are terminated in a symmetric way.2 The symmetry analysis of
chiral and zigzag tubes is unaffected by a nonsymmetric ter-
mination. However, the destruction of inversion symmetry/hor-
izontal-reflection symmetry for armchair tubes eliminates the
distinction between modes of even and odd parity in that case.
For zigzag and chiral nanotubes, the finite length reduces the
symmetry of the tube to the point-group symmetry of the unit
cell (assuming that the tube ends do not destroy the point-group
symmetry). For zigzag tubes, this means that the sym-
metry group is , and for chiral tubes, this means that
the symmetry group is , where is the greatest common di-
visor between and , . The case of armchair
tubes is a little bit more complicated: For aninteger number
of unit cells in the finite-length tube, the horizontal reflection
symmetry of the unit cell is preserved and the symmetry group
is . If the tube contains ahalf-integernumber of unit cells,
the reflection symmetry is lost, but the presence of improper ro-
tations enforces the symmetry of the system. Table II sum-

2Note that, in BN systems, the formation of B–B or N–N bonds is avoided,
which precludes termination of tubes by fullerene-like half-spheres, which
would contain pentagon rings with two borons or nitrogens as nearest neighbors
[42]. In samples of BN tubes, it was observed that the termination proceeds
usually by a flat angular cap or with an encapsulated particle [17].

marizes the symmetry groups and the number of active modes
for zigzag and armchair tubes of finite lengths. Here, we have
omitted the case of chiral tubes. If , in principle,
all phonon modes can be active. However, the intensities of most
of these modes may be vanishingly small. We note that the sym-
metry evaluation using the point group symmetry of the unit cell
corresponds to the symmetry evaluation, which has been mostly
employed for the symmetry evaluation of carbon tubes (up to
the very recent accurateab initio calculations in [33]). In the
zone-folding picture, the use of the point-group symmetry of
the unit cell signifies that not only the modes of the-point of
the sheet, but also the modes of thepoint are mapped onto

modes of the tube. This is indicated in Fig. 2 by the letters
in parentheses. Furthermore, the modes close to thepoint,
which would fold onto modes of and symmetry ac-
cording to the strict symmetry assignment, possesand
symmetry according to the more relaxed point-group symmetry
of the unit cell.

The diameter dependence of all active modes in finite-length
tubes is displayed in Fig. 7. Indeed, in comparison with Fig. 6,
additional branches, which converge toward the phonons of the
sheet at the point with frequencies 305, 550, 636, 1168,
1283, and 1315 cm . Note the pronounced difference in the
scaling with diameter of the additional branches between arm-
chair and zigzag tubes. For example, the branch that approaches
1168 cm is very flat in the case of the zigzag tubes, but has
a strong diameter dependence for the armchair tubes. This is
easily understood when keeping in mind that, for zigzag tubes,
the zone folding is done along in the
Brillouin zone of the sheet. This means that, in the dispersion
relation of the sheet (see right-hand-side panel of Fig. 6), the

point at 1168 cm is approached from the right-hand side
where the dispersion relation is very flat. For armchair tubes,
the point is accordingly approached from the left-hand side
where the dispersion relation is steep. In the case of the phonon
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Fig. 7. Raman and IR active modes of BN nanotubes withfinite lengths. For an explanation of the symbols, see Fig. 6.

branch approaching 550 cm for , this effect is even
stronger and leads to a monotonously decreasing convergence
toward this value for zigzag tubes and to a monotonously in-
creasing convergence for armchair tubes.

For the proposed frequencies of active modes in tubes of fi-
nite length in Fig. 7, we have assumed that the tubes are suf-
ficiently long such that their frequencies closely resemble the
frequencies of the infinitely long tube. In other words, we have
used the phonons modes atof the infinitely long tube and per-
formed the symmetry analysis as if the tubes had finite length.
This approximation is justified for vibrational modes with very
long wavelength along the tube axis. Modes with short wave-
length along the tube axis have considerably different frequen-
cies, which resemble the frequencies of phonons with nonvan-
ishing in infinite tubes. However, the Raman and IR intensi-
ties are vanishingly small because the strong oscillations lead
to very weak coupling-matrix elements with the laser field. Fur-
thermore, the fact that a mode is “allowed” by the selection rules
does not mean that it has a high intensity. The intensity of the
modes that are allowed in finite tubes, but forbidden in infin-
itely long tubes, decays with the length of the tube. If the exact
scaling is calculated, the intensities of these peaks can be used
to determine the tube length.

V. PHONON FREQUENCIES IN ACLOSELY PACKED PERIODIC

ARRAY OF TUBES

Since, in real samples [17], nanotubes occur both isolated and
in bundles, it is important to investigate the effect of inter-tube
interaction onto the phonon frequencies. For carbon nanotubes,
only a weak perturbation was found for closely packed nanotube
arrays. In the calculations of Kahn and Lu [43], the effect of
bundling does not exceed 10 cm, except for the very low en-
ergy and modes. For the radial breathing mode (RBM),
they found a stiffening by 4%. Henrardet al. [44] found a value
of 10% for the stiffening of the RBM due to bundling.

We investigate the effect of bundling in BN nanotubes by cal-
culating a closely packed lattice of nanotubes with an inter-tube
distance of 6.5 a.u., which corresponds approximately to the

TABLE III
CHANGE OF PHONON FREQUENCIES(IN cm ) DUE TO CLOSE PACKING OF

TUBES IN A PERIODIC ARRAY: RAMAN AND IR ACTIVE MODES FOR AN

ISOLATED BN(8; 0) TUBE (WITH AN INTERTUBE DISTANCE OF14 a.u.)
IN COMPARISON WITH THE MODES FOR A“CLOSELY PACKED” A RRAY

OF TUBES (INTERTUBE DISTANCE 6.5 a.u.). IF THE COUPLING TO AN

ELECTRIC FIELD IS INCLUDED, A STRONG SHIFT/SPLITTING OF

SOME FREQUENCIESIS OBSERVED. (THE NUMBERS IN

PARANTHESES ARE THE CORRESPONDING

FREQUENCIESWITHOUT E-FIELD COUPLING)

inter-sheet distance in h-BN. As in the case of “isolated” tubes,
the geometry is optimized, which leads to a slight deforma-
tion from the ideal cylindrical geometry and requires the dis-
placement of all atoms in the unit cell for the calculation of
phonon frequencies. In the upper part of Table III, we com-
pare the (Raman and IR active) phonon frequencies of a closely
packed tube with a (quasi-)isolated tube. The gen-
eral effect of bundling is a slight shift of the nondegenerate
modes and a splitting of the doubly degeneratemodes into
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Fig. 8. High-frequency tangentialE mode in a closely packed array of(8; 0)
BN nanotubes.

two modes with slightly different frequencies. Most phonon
modes (except for the lowest mode) are softened, contrary
to the observations in C nanotubes, where, on average, a slight
stiffening of the modes was observed [43], [44]. Apparently,
the electrostatic inter-tube interaction acts, on average, as an
attractive force, which counteracts the hardening of phonons
that would take place if only the repulsion caused by the be-
ginning inter-tube overlap of the wave functions would modify
the frequency. The effect, however, is weak and does not ex-
ceed 10 cm in most cases. A notable exception to the weak
influence of bundling is the high-frequency tangential (T)
mode, which is softened by almost 50 cm. This mode is de-
picted in Fig. 8. At the distance of the closest approach between
neighboring tubes, equivalent atoms are locally moving, as in
two parallel planes. This softens the mode and makes it suscep-
tible to LO–TO splitting in macroscopically extended nanotube
arrays, as shown below. In C nanotubes, where the electrostatic
interaction is absent, this modes do not experience a different
shift by bundling than the and modes.

In macroscopic polar crystals, the longitudinal optical
phonons give rise to an electric field, which leads to a shift
in frequency and to a splitting of degenerate LO–TO modes.
For bulk h-BN, this LO–TO splitting amounts to almost
200 cm ([6]). “Macroscopic” in this context means that the
dimensions of the “crystal” in all three directions are larger
than the wavelength of the interacting laser light. While this
is certainly not the case for nanotube bundles containing only
tens of nanotubes, it is conceivable that, in the near future,
better purification and alignment methods lead to large periodic
arrays of nanotubes. In this case, the effect of coupling to
the -field will become important for the LO modes. In the
following, LO always denotes longitudinal with respect to the
wave vector of the interacting laser light. Even though the ex-
cited phonons close to carry approximately zero momentum,
it does play a role from which direction the limit is
taken. Table III demonstrates that, for the laser light parallel
to the tube axis, the modes experience a shift. In the case
of the radial breathing and buckling modes, the shift is weak.
However for the high-frequency (L) mode, the shift even
exceeds the 200 cm of the LO–TO splitting in h-BN. Note
that the shift is also present for the periodic array of tubes with

large inter-tube distance. Due to the long-range electrostatic
interactions between the tubes, the shift decreases very slowly
as a function of inter-tube distance. For incidence of the laser
light perpendicular to the tube axis, it is the modes that
experience a splitting in frequency. While all modes are
slightly affected, it is the (T) mode of Fig. 8 that experiences
the relatively strong splitting of approximately 90 cm in
the closely packed array and 40 cmin the array with large
inter-tube distance. It can be seen from Fig. 8 that all B atoms
are moving parallel and the N atoms likewise. This makes it
a longitudinal optical mode in the macroscopic array of tubes
with the laser light incident in the direction of oscillation.
In anisotropic polar systems, such as h-BN, the directional
dependence of the LO–TO splitting has been used for angular
resolved STS (ellipsometry) [4]. Due to the variety of modes,
macroscopic arrays of BN nanotubes promise to be an even
richer playground for angular resolved IR spectroscopy.

VI. CONCLUSION

Since BN nanotubes can now be produced in macroscopic
(i.e., gram) quantities, Raman and IR spectroscopy will very
likely develop into standard tools for characterization of the
tubes according to diameter, length, and chirality. The charac-
terization requires accurate data on the vibrational properties
of the tubes. We have presentedab initio calculations of the
phonon frequencies as a function of tube diameter and tube chi-
rality. The phonon modes display a very close similarity to the
phonon modes in carbon tubes. However, due to the reduced
rod group symmetry, more modes are Raman and IR active. We
have discussed possible deviations from the phonon frequencies
of ideal, isolated, and infinitely long tubes in realistic samples
of BN tubes. The finite length of the tube (typically shorter than
the wavelength of IR light) leads to a reduction of the tube sym-
metry and thereby to additional active modes. The Raman and
IR intensity of these modes might serve as an indicator for the
average length of the measured tubes. An important difference
with respect to carbon tubes is the polarity of BN. In large ar-
rays of closely packed tubes, the polarity leads to a coupling of
longitudinal optical modes with the internal electric field. The
corresponding frequency shift of these modes depends on the di-
rection of the incoming light and the average distance between
the tubes. The richness of predicted phonon frequencies gives
rise to the hope that, in the future, large samples of clean and
well-aligned samples can be produced and spectroscopically in-
vestigated.
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