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Vibrational Properties of Boron—Nitride Nanotubes:
Effects of Finite Length and Bundling

Ludger Wirtz and Angel Rubio

Abstract—\We present ab initio calculations of phonons in number of walls in multiwall nanotubes as long as the inner
single-wall boron—nitride (BN) nanotubes. Raman and infrared diameter is above 0.8 nm.

(IR) active modes of isolated and infinitely long tubes are evaluated The first synthesis of multiwall BN tubes was reported in

according to the nonsymmorphic rod groups of BN nanotubes. . :
For tubes of finite length, the selection rules are less restrictive 1995 [9]. By now, BN tubes are routinely produced in several

and give rise to additional modes, which may be observed in groups [10]-[16]. The production of single-wall BN tubes in
Raman and IR spectroscopy with an intensity depending on the gram quantities [17] is a further milestone toward applications
tube length. Bundling of tubes is shown to have little effect on the of BN nanotubes. The as-produced samples of BN nanotubes
phonon frequencies. However, arranging tubes in a large periodic ¢4¢6 the same problems as its carbon brethren. The raw product

array (larger than the wavelength of incoming light) gives rise to . . .

a strong frequency shift (longitudinal-optical-transverse-optical at the end_ of the product|0|_'1 p_“?cess contains t_UbeS Of_ various
splitting) of certain modes due to the establishing of a macroscopic lengths, diameters, and chiralities, some of which are isolated
electric field. Modes of A; symmetry experience a shift for laser while others form bundles. This tube material may furthermore

light along the tube axis andE; modes are split for light incidence  pe contaminated by catalyst particles and raw material from the

in the perpendicular direction. beginning of the production process. Further processing at this
Index Terms—Boron-nitride (BN) nanotubes, infrared (IR) stage requires detailed information from spectroscopy.
spectroscopy, phonons, Raman spectroscopy. Several spectroscopic methods are commonly used for

the identification and characterization of nanotube samples.
High-resolution transmission electron (HRTEM) allows for a
o o _ quick view at the scene with almost atomic resolution. Scanning
B ORON nitride (BN) is isoelectronic to carbon andynneling microscopy/spectroscopy (STM/STS) allow to get
displays—among  others—a  graphite-like = hexagongfomic resolution and to map the electronic structure to the
phase (h-BN), which has been extensively studied by varioygqerlying nanotube geometry [18]. In optical spectroscopy,
spectroscopic methods [1]-{6]. The elastic constants are Vejying laser light, the spacial resolution is lost. However, alter-
similar (although smaller), but the polar nature of the BlNative information about the band structure and the vibrational
bond leads to significant changes in the electronic structure gperties of the constituents can be gained. Optical absorption
h-BN as compared to graphite. While graphite is a semimetg{ectroscopy probes the electronic band structure by direct
(zero bandgap in the single sheet), h-BN has a large bandgagitation of an electron from the valence to the conduction
of approximately 5.5 eV [3]. Furthermore, its high thermahang. Since BN tubes have a wide bandgap, either multiphoton
stability and relative chemical inertness distinguishes it fromocesses or UV light are necessary for this process to occur
its carbon counterpart. _in BN nanotubes. Complementary information about the band
The structure of a carbon nanotube can be explained §yycture of multiwall BNnanotubes has recently been obtained
rolling up a single graphene sheet. It is natural to do the Sape electron energy loss spectroscopy (EELS) [19].
with a single hexagonal BN sheet and construct a BN nanotuberecent spectrofluorimetric data on carbon single-wall nan-
which is isoelectronic to C nanotubes, but should carry ovgfypes (SWNT) suspended in an aqueous surfactant combined
some of the characteristic differences of h-BN with respegfith Raman and optical absorption spectroscopy has been able
to graphite. Indeed, tight-binding [7] and first-principles calyy provide information about tube chirality [20]. At lower en-
culations [8] demonstrated that BN tubes are stable and haygy infrared (IR) absorption probes the direct excitation of
a bandgap similar to h-BN, independent of the tube diametgfionons. Finally, Raman spectroscopy probes the excitation of
and chirality. Furthermore, the bandgap is independent of t§gonons by measuring the frequency shift in elastically scat-
tered laser light.

, _ _ _ We investigate the application of the latter two spectroscopic
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Raman scattering is nonresonant due to the large bandgap ofdhange of the force acting on atann directiong with respect
tubes. The resulting spectra are, therefore, weaker in intengiya displacement of atomin directiona as follows:

and must be carefully separated from a possible overlap by P
resonant Raman scattering from contaminants [23]. On the Cc*P(q) =

other hand, in BN tubes, the efficiency of IR-absorption is duz(q)
enhanced by the polarity of the material and gives rise toNbte the dependence gmf the dynamical matrix and displace-
much more pronounced IR spectrum [24] than in the case @knts. In an explicit calculation of the dynamical matrix by dis-
carbon tubes where the IR spectra have very little structure afielcing each of the atoms of the unit cell into all three directions,
can hardly be distinguished from the IR spectrum of graphitgperiodic supercell has to be used, which is commensurate with
[25]. the phonon wavelengthr /q. Fourier transform of the-depen-

For the interpretation of measured spectra [23], an accurgiént dynamical matrix leads to the real space force constant ma-
knowledge of the phonon frequencies as a function of tube giix ¢”(R). A phonon calculation starts with a determination
ameter and chirality is indispensable. In a recent paper [26], Wethe dynamical matrix in real space or reciprocal space (2).
have presentedb initio calculations of phonons in ideal iso- Before discussing how the dynamical matrix is constructed
lated infinitely long BN nanotubes. In this paper, the emphasisr BN nanotubes, it is instructive to look at how phonons have
lies on the effects of deviation from this ideal case, i.e., finitgeen calculated in carbon tubes. The easiest, very intuitive, and
tube size and occurrence of tubes in bundles. EXperimentEﬂtYmputationa”y fast approach is the use of (rea| Space) force
produced tubes have a finite length (typically between 200-4@8@nstants that are fitted to experimentally measured phonon dis-
nm [17]), which is shorter than the wavelength of IR light. Ipersion relations. A set of force constants up to fourth nearest
this case, the tubes appear as very large molecules rather thaighbor interaction was originally used to describe the phonon
infinitely extended. This lowers the nonsymmorphic rod grougispersion relation of graphite and has also become the stan-
symmetry of the tubes [27]-[29] to the point-group symmetry qfard for nanotubes [31], [32]. However, the agreement between
afinite-size tube. Lower symmetry leads to a relaxation of selegxperiment and theory is limited to certain regions in the first
tion rules and gives rise to additional “allowed” Raman and IBrillouin zone. Furthermore, receab initio calculations [33],
active modes. The effect of bundling of tubes is difficult to treayhich agree almost perfectly with the experimental dispersion
exactly because a super cell for a bundle of, e.g., ten tubes wotdfhtion of graphite, have explicitly listed force constants and
be prohibitively large. As an approximation to the bundling edemonstrated that the cutoff with the fourth nearest neighbor is
fect, we study, therefore, the phonon frequencies in an (infiuestionable. A more precise, but also more costly, alternative
itely extended) closely packed array of tubes. In this case, thethe use of a force constant approach is the explicit calcula-
polarity of BN allows for the coupling of certain modes to aion of the dynamical matrix by tight binding (see, e.g., [34]) or
self-induced macroscopic electric field (Lydanne-Sachs-Tellgh initio methods [33], [35]. For BN tubes, phonons have been
splitting [30]), which leads to a shift of some frequencies. Thigalculatedab initio [26] by tight-binding [36] and by a valence
effect depends on the direction of the incoming laser light.  shell model [37].

The structure of this paper is as follows. In Section II, we give We have chosen theb initio approach for our calculation be-
some details on the calculation of phonon frequencies by defuse the tight-binding calculations for phonons in C nanotubes
sity-functional perturbation theory (DFPT) and compare withroduced deviations of up to 100 crhfor the phonons in the
other more empirical methods. The results for ideal infiniteligh-frequency regime. We use density-functional theory (DFT)
long tubes are summarized in Section Il where an intuitive e¥; the local density approximation (LDA) as implemented in the
planation of the symmetry of Raman and IR active modes dgde ABINIT2 Only valence electrons are treated explicitly.
also given. In Section IV, we present the frequencies of Ram@@re electrons are described by Troullier—Martins pseudopo-
and IR active phonon modes in tubesfinite length. In Sec- tentials [38]. The wave functions are expanded in plane waves
tion V, we discuss the expected Raman and IR spectra in a pgfith an energy cutoff at 40 a.u. (atomic units). Since the code

F(q). 3)

odic array of densely packed tubes. requires the use of a three-dimensional supercell, the (infinitely
long) tubes are ordered in a triangular periodic array. In order to
[I. METHOD OF CALCULATION simulate an isolated tube, we choose a large inter-tube distance

of 14 a.u. For the simulation of the “solid of tubes,” a distance
of 6.5 a.u., which corresponds roughly to the inter-sheet dis-
tance in h-BN is chosen. The tube geometry is optimized (until
the forces acting on all atoms are smaller than 50 ° a.u.)
and the stress along the tube axis is minimized by adjusting the
super-cell size along the tube axis.

The second derivatives in the dynamical matrix (2) are cal-
culated in density-functional perturbation theory (DFPT) [39]
B 92E as implemented in ABINIT [40]. This means that the atomic

C = 2 i ici .
ot (q) (‘)uja(q)(‘)uf(q) ) displacements are not performed explicitly, but treated as a per

The phonon frequencies as a function of the phonon wave
vectorq are the solution of the secular equation

det | ——C°"(q) — w? =0. 1
|\ Arar e (q) —w(q) (1)
M, andM; denote the atomic masses of atostand?, and the
dynamical matrix is defined as

h od tes the displ t of atonin directi IThe ABINIT code is a common project of the Université Catholique de Lou-
whereug denotes the displacement or atemn direClion . 4in; | ouvain, Switzerland, Corning Incorporated, and other contributors. [On-

The second derivative of the energy in (2) corresponds to tfie]. Available: http://www.abinit.org
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turbation. The equations for the first-order change in the ele )

tron density can be cast into a form similar as the Kohn-She

equations [41] and must be solved self-consistently (i.e., a

justing the Hartree and the exchange-correlation potential wi

the change in density). In the case of (quasi-)isolated tubes, 0

the displacement perturbation of one boron and one nitrog & }

atom needs to be calculated explicitly. The residual elemer 4 S

of the dynamical matrix are obtained by symmetry transform: -

tion employing the nonsymmorphic rod group symmetry of th

tubes. In the case of the close-packed tubes, the exact symm

is lost and all atomic displacement have to be calculated.
Since BN is a polar material where N is slightly neqativel)fi . 1. Comparison of the point-group symmetry of the unit cell with the

charged and B is slightly positive, the long-range character space-group symmetry of the armchair BN tubes.

the Coulomb potential gives rise to a macroscopic electric field

FE for longitudinal optical phonons in the limit — 0. The dy- TABLE |

namical matrix (2) must, therefore, be corrected under inclusion SYMMETRIES AND NUMBER OF RAMAN AND IR ACTIVE MODES IN

of the Born effective charge tensdi*>® of the ions and the INFINITELY LONG BN Nanoruses (FoLLowine [27])

static dielectric tensar®?. Both quantities can be calculated in armchair (n,n) || chiral (n,m) || zigzag (n,0)
DFPT [39], [40] from the macroscopic electric polarizatifn Conh Cn — 2ny
; Raman A 3 A 4 1|3
of the medium through Efg 5 B |5 B |5
Eoyy | 4 E; | 6 E; | 6
oP IR Ay 1 A |4 A |3
eZil =0 ———=— 4 By |3 Ey |5 Ei |5

us(q="0)|._,

an(n,n) armchair tube. The left-hand side shows the unit cell of
the tube containingn atoms. (Note that the atoms at the lower
and upper boundary of the unit cell are also contained in the ad-

®) jacent unit cells and are, therefore, counted as “half” atoms.) It
can be easily seen that the unit cell hasaiold rotation axis

For (quasi-)one-dimensional systems like isolated tubes, fyth rotationangle) = 2x/n) and a horizontal reflection sym- -
classical macroscopic electric field can be induced through IgRETY Plane. Therefore, the point-group symmetry of the unit
gitudinal optical phonons and the above-mentioned correctigl IS Crr- The right-hand side of Fig. 1 demonstrates that, in
can be neglected. However, in Section V, it will be shown th#e infinitely extended tube, rotation k2 with a subsequent

the effect of electric-field corrections is very strong for somganslation by the vectdr maps the system onto itself as well.
modes in large periodic arrays of tubes. The “point group in the rod group” of an armchair BN tube is,

therefore, the’s,,;, group. Table | summarizes the findings of
[27] for the IR and Raman active modes in BN nanotubes. It
lists the symmetry groups of armchair, chiral, and zigzag BN
nanotubes, the symmetries of the active modes, and the corre-
Since the photons of IR or visible light carry a momentungponding number of modes with that symmetry. Note that for
which is negligible compared to the momentum associated withiral and zigzag tubes, the IR active modes form a subset of
atomic motion, only phonons with a wave vector 0 (the “I'  the Raman active modes. This is different for armchair tubes,
point” in reciprocal space) can be excited in first-order Ramavhere the two sets are disjoint.
and IR absorption processes. Selection rules impose a furthefhe symmetry of the active modes can be understood intu-
restriction on the number of IR and Raman active modes. Oritively by applying the zone-folding method [31], i.e., rolling
modes that transform under symmetry operations as a quadrapa sheet into a tube. This is demonstrated for an armchair nan-
form are Raman active and only modes that transform as a veaitube in Fig. 2. The left-hand side shows a part of a hexagonal
are IR active. Higher symmetry leads to stricter selection ruleheet, which is rolled along the direction &f, . The phonon
and thereby to a lower number of active modes. Raman andwRvevector along this direction will be quantized in the tubes.
active modes of carbon nanotubes have been frequently evidlis corresponds tan discrete values along the lile— M —
uated based on the point group symmetry of the unit cell [31].in the reciprocal space of the sheet (right-hand side of Fig. 2).
However, Alon pointed out [27] that, for nanotube STS, the nofithe pointy, = 0 corresponds to ad mode of the tube where all
symmorphic rod group symmetry of the tubes should be usedjuivalent atoms along the tube circumference move in phase.
As in solid-state spectroscopy, where the “point group in thég. 3(a) demonstrates this for the radial buckling mode. (In
space group” rather than the point group of the unit cell déie high-frequency modes, which are derived from the optical
termines the selection rules, it is the “point group in the rogphonon branch of the sheet, B and N atoms oscillate with a
group” that determines which modes are active in infinitely exphase difference af, while in the low-frequency modes, e.qg.,
tended nanotubes. In Fig. 1, we demonstrate this for the cas¢haf radial breathing mode, B and N atoms oscillate in phase.)

where2 denotes the unit cell volume and

0P,

af
P =0, 4
€oo pt+am BE@

w (=0

Ill. RAMAN AND IR ACTIVE MODES IN INFINITELY
LONG TUBES
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Fig. 5. High-frequencyB modes of &6, 6) armchair nanotube.

Fig. 2. Sketch of the zone-folding method for @n ») armchair nanotubes.
Left-hand side: hexagonal sheet with translation ve@toaind perpendicular ) . . )
phonon wave vecto ; along which the sheet is rolled into a tube. This Fig. 5 displays thé3 modes of &6, 6) armchair tube, which

corresponds to a quantization Af, in 2» steps in the Brillouin zone of the gre derived from thel/ point of the three optical phonon
sheetalong the linf — 1" (right-hand side). branches of the sheet. As in the case of thenodes, the R

and T modes have odd parity and the L mode has even parity.
However, the behavior under rotation is different from the
modes. The modes are mapped onto themselves under rotation
by ¢ = 2x /n (corresponding to the symmetry group of the unit
cell), but they change the direction of atomic motion under the
basic symmetry operation of the nonsymmorphic rod group,
which is a rotation byp/2 accompanied by translation along
the tube axis.

The central result of ouab initio calculations is the diameter
dependence of the frequencies of Raman and IR active modes,
which is displayed in Fig. 6 for armchair and zigzag tubes. In
the right-hand-side panel, we also display the phonon dispersion
relation of the single sheet in order to illustrate the zone-folding
procedure. A detailed discussion of the results can be found in
[26]. Here, we just give a summary of the most important fea-
tures. The phonon spectrum can roughly be divided into three
Fig. 4. High-frequencyd modes of &6, 6) armchair nanotube: radial (R), regimes. The phonons in the low-frequency region are derived
tangential (L), and longitudinal (L) modes. from the acoustic branches of the sheet dispersion relation. With

. o ] increasing diametet, the phonon frequencies decreasé aA$
The pointsy = 1 andyu = 2n — 1 in Fig. 2 are equivalentand oy /42 corresponding to the liner/quadratic slope of the longitu-
lead to a doubly degeneratg mode in the tube, which has twogina| acoustic (LA), transverse acoustic (TA), and out-of-plane
nodes along the circumference [see Fig. 3(b)]. Accordingly, thgoystic (zA) branches of the sheet dispersion, respectively. Itis
two pointsy, = 2 andy = 2n — 2 correspond to a doubly de- s strong diameter dependence that makes the low-frequency
generatds, mode with four nodes along the circumference [s&godes, especially the radial breathing mode, prime candidates
Fig. 3(c)]. The construction of the modés, .. ., i, 1 Works  for the diameter determination via Raman and IR STS. The
analogously. The poini = « finally leads to a nondegeneratesnonons in the intermediate-frequency region around 800cm
B mode where neighboring atoms of one kind oscillate with &¢ derived from the optical out-of-plane (ZO) branch of the
phase difference of corresponding to a wave with—1nodes  gpeet, For large diameter, all three phonon modes?;, and
along the circumference, as depicted in Fig. 3(d). In Fig. 4, we ) converge toward the frequency of the ZO mode at gamma.
show thed modes of 46, 6) armchair tube that are derived frompjs frequency is strongly present in the IR spectra of multi-
the three optical modes of the sheet'afThe radial (R) buck- \ya11 BN tubes [24]. The high-frequency regime (above 1200
ling mode stems from the optical out-of-plane (ZO) mode of thg,;-1 comprises the phonon modes derived from the LO and
sheet. The two optical in plane modes of the sheet [longitudingd pranches of the sheet. The L modes converge monotonously
optical (LO) and tangential optical (TO)] lead to a mode wherigreasing toward the asymptotic value at 1382 énwhile the
the atoms oscillate in transverse—or tangential—(T) directiogny,odes display a strong nonmonotonic behavior and approach
and a mode with oscillation in longitudinal (L) direction. Fromy,e asymptotic value from above, corresponding to the strong

Fig. 4, it can also be seen that the R and T modes have eygar-pending of the LO branch in the dispersion relation of the
parity, i.e., they are mapped onto themselves under inversionghet.

the center of the unit cell. The L mode, in contrast, has odd parity
because the direction of atomic motion changes under inversion.
For chiral and zigzag tubes, there is no inversion symmetry and
the distinction betweegeradeandungeradenodes is absent. It

is this presence/absence of inversion symmetry that leads to th# the tubes are shorter than the wavelength of incident laser
above-noted fact that the IR active modes are also Raman aclight, the tubes appear as long molecules rather than as infinitely
in chiral and zigzag tubes, while in armchair tubes, the two seaistended systems. In this section, we discuss the implication of
have no common elements. the finite length for the number of Raman and IR active modes.

@ (b) (© (d)

IV. RAMAN AND IR ACTIVE MODES IN TUBES
OF FINITE LENGTHS
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Fig. 6. Phonon frequencies of Raman and IR active modes of infinitely long zigzag and armchair BN nanotubes as a function of the tube diameter. The lines
denote the result of the zone-folding method (compare to the dispersion relation of the single sheet in the right-hand-side panel). The symbedslac th

ab initio calculations for selected tubes. The shape of the symbols characterizes its symmetry (see legend in the inset) and the shading in black, white, or gray
distinguishes between modes that are Raman active, IR active, or both Raman and IR active, respectively.

TABLE I marizes the symmetry groups and the number of active modes

SYMMETRIES AND NUMBER OF RAMAN AND IR ACTIVE MODES IN FINITE for zigzag and armchair tubes of finite Iengths. Here, we have
LENGTH AARMCHAIR AND ZIGZAG BN NANOTUBES. (NUMBER OF

CENTRAL FREQUENC|ES i_e" FOR MODES WITH LONG Omltted the case Of Chlral tUbeS.ngd(’IM m) == 1, |n prlnCIp'e,
WAVELENGTH ALONG THE TUBE AXIS.) all phonon modes can be active. However, the intensities of most
oA (o) of these modes may be vanishingly small. We note that the sym-
Cor ’ Son zigzag (n,0)  Metry evaluation using the point group symmetry of the unit cell
(cven piupher of uul coll) | {odd muber of un't o) Cno corresponds to the symmetry evaluation, which has been mostly
Raman | A, |7 | A |7 = ST A, (5 A7 employed for the symmetry .e_valuation pf ca_rbon tubes (up to
Iélg § g;ﬁ’ ; gm_l) 2 glg 2 gl :; the very recent accuratb initio calculations in [33]). In the
R 7 I B e 5 ST A TS T A T7 zone-folding picture, the use of the point-group symmetry of
Ew | 7| BV |7 2 5| B |S | B |11 the unit cell signifies that not only the modes of thgoint of

For the symmetry analysis, we assume that the ends of the tu heessheet, but also the modes of thepoint are mapped onto

; . . . modes of the tube. This is indicated in Fig. 2 by the letters
are terminated in a symmetric waylhe symmetry analysis of : :

. ) . . __In parentheses. Furthermore, the modes close td/hgoint,
chiral and zigzag tubes is unaffected by a nonsymmetric ter; "
o . . . which would fold onto modes aof’,,_; andE,,_» symmetry ac-
mination. However, the destruction of inversion symmetry/hor- : .
. . . - cording to the strict symmetry assignment, posBesand F»
izontal-reflection symmetry for armchair tubes eliminates thé . :
symmetry according to the more relaxed point-group symmetry

distinction between modes of even and odd parity in that case. .
the unit cell.

For zigzag and chiral nanotubes, the finite length reduces fh he diameter dependence of all active modes in finite-length

symmetry of the tube to the point-group symmetry of the unt'fjbes is displayed in Fig. 7. Indeed, in comparison with Fig. 6,

cell (assuming that the tube ends do not destroy the pomt‘groali'&’ditional branches, which converge toward the phonons of the

symmetry). For(n,0) zigzag tubes, this means that the sym- : . )
metry group is”,,.,, and for(n, m) chiral tubes, this means thatSheet at thel/ point with frequencies 305, 550, 636, 1168,

. ! 71283, and 1315 cm'. Note the pronounced difference in the
the symmetry group i€y, whered is the greatest common di- . o "
. .~ scaling with diameter of the additional branches between arm-
visor betweem andm, gcd(n, m). The case ofn, n) armchair

tubes is a little bit more complicated: For amteger number chair and zigzag tubes. For example, the branch that approaches

1168 cnT! is very flat in the case of the zigzag tubes, but has

of unit cells in the finite-length tube, the horizontal reflectloré strong diameter dependence for the armchair tubes. This is

symmetry of the unit cell is preserved and the symmetry group ™. S )
is Cpy,. If the tube contains half-integernumber of unit cells, e%sny understood when keeping in mind that, for zigzag tubes,

the zone folding is done alolg— K — M — K — I"inthe

:Zggﬁziﬁ;grc?;ﬂ:getz'?T:?nsé't:)u;gtfepgezsgncqe_?;Lﬁplrlospuerxg_rillouin zone of the sheet. This means that, in the dispersion
2n SY y Y ' relation of the sheet (see right-hand-side panel of Fig. 6), the

2Note that, in BN systems, the formation of B-B or N-N bonds is avoided}/ point at 1168 cm! is approached from the right-hand side
which precludes termination of tubes by fullerene-like half-spheres, whighhere the dispersion relation is very flat. For armchair tubes

would contain pentagon rings with two borons or nitrogens as nearest neighhors . . .
[42]. In samples of BN tubes, it was observed that the termination proceé%keM point is accordingly approached from the left-hand side

usually by a flat angular cap or with an encapsulated particle [17]. where the dispersion relation is steep. In the case of the phonon
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Fig. 7. Raman and IR active modes of BN nanotubes fiiite lengths. For an explanation of the symbols, see Fig. 6.
branch approaching 550 crhfor d — oo, this effect is even TABLE I
. —1
stronger and leads to a monotonously decreasing convergenE?“NGE OF PHONON PREQUENCIES(IN cm*) DUE TO CLOSE PACKING OF
. . . UBES IN A PERIODIC ARRAY: RAMAN AND IR ACTIVE MODES FOR AN

toward this value for zigzag tubes and to a monotonously iN- |soLarep BN(S, 0) TUBE (WITH AN INTERTUBE DISTANCE OF 14 a.u.)
creasing convergence for armchair tubes. IN COMPARISON WITH THE MODES FOR A“CLOSELY PACKED” A RRAY

For the proposed frequencies of active modes in tubes of fi- OF TUBES (INTERTUBE DISTANCE 6.5 a.u.). ¥ THE COUPLING TO AN

. . . ELECTRIC FIELD IS INCLUDED, A STRONG SHIFT/SPLITTING OF

nite length in Fig. 7, we have assumed that the tubes are suf- SOME FREQUENCIES|S OBSERVED. (THE NUMBERS IN
ficiently long such that their frequencies closely resemble the PARANTHESES ARE THE CORRESPONDING
frequencies of the infinitely long tube. In other words, we have FREQUENCIESWITHOUT E-RELD COUPLING)
used the phonons modedabf the infinitely long tube and per-
formed the symmetry analysis as if the tubes had finite length

Without coupling to macroscopic E-field
isolated BN(8,0) close packed BN(8,0)

This approximation is justified for vibrational modes with very E2 | R 59.3 60.5/76.5
long wavelength along the tube axis. Modes with short wave- fi I}i g(l);'g 200'321/82101‘0
length along the tube axis have considerably different frequen g, | L 396.0 395.6/ 396.0
cies, which resemble the frequencies of phonons with nonvan ﬁ‘ ; gggg 2§§'§§ gg;g
|_sh|ngq in |n_f|n|_te tubes. However, the Raman and_IR _|ntenS|- E, | R 749 8 746.8/ 7472
ties are vanishingly small because the strong oscillations lea g, | R 785.5 773.9/ 775.5
to very weak coupling-matrix elements with the laser field. Fur- A1 | R 808.5 805.7
thermore, the fact that a mode is “allowed” by the selection rules ﬁi t }gggg 134?.38(:}3:7.1
does not mean that it has a high intensity. The intensity of the g, | T 1463.4 1416.6/1417.8
modes that are allowed in finite tubes, but forbidden in infin- E2 | T 1474.0 1465.1/1470.4

itely long tubes, decays with the length of the tube. If the exact E-field coupling with ¢ — 0 along tube axis

scaling is calculated, the intensities of these peaks can be uss

isolated BN(8,0)

close packed BN(8,0)

: A1 | R 3185 (317.9) 318.7 (318.1)
to determine the tube length. A | R 811.6 (808.5) 809.0 (805.6)
A | L 1547.2 (1362.5) 1585.9 (1361.5)
E-field coupling with ¢ — 0 perpendicular to tube axis
V. PHONON FREQUENCIES IN ACLOSELY PACKED PERIODIC isolated BN(8,0) close packed BN(8,0)
ARRAY OF TUBES E, | T | 428.4/4287 (428.4) 422.4/431.5 (422.3] 431.0)
E1 | R | 785.7/791.9 (785.5) 775.0/791.4 (773.9/ 775.5)
Since, in real samples [17], nanotubes occur both isolated an E1 | L | 1348.9/1349.0 (1348.9) | 1346.9/1347.2 (1346.8/1347.1)
T | 1463.4/1500.8 (1463.4) | 1416.9/1507.3 (1416.6/1417.8)

in bundles, it is important to investigate the effect of inter-tube B
interaction onto the phonon frequencies. For carbon nanotubes,
only a weak perturbation was found for closely packed nanotuilmer-sheet distance in h-BN. As in the case of “isolated” tubes,
arrays. In the calculations of Kahn and Lu [43], the effect adhe geometry is optimized, which leads to a slight deforma-
bundling does not exceed 10 ch except for the very low en- tion from the ideal cylindrical geometry and requires the dis-
ergy F; and E; modes. For the radial breathing mode (RBM)placement of all atoms in the unit cell for the calculation of
they found a stiffening by 4%. Henraed al.[44] found a value phonon frequencies. In the upper part of Table IIl, we com-
of 10% for the stiffening of the RBM due to bundling. pare the (Raman and IR active) phonon frequencies of a closely
We investigate the effect of bundling in BN nanotubes by cgbacked(8, 0) tube with a (quasi-)isolate@, 0) tube. The gen-
culating a closely packed lattice of nanotubes with an inter-tubeal effect of bundling is a slight shift of the nondegeneréate
distance of 6.5 a.u., which corresponds approximately to theodes and a splitting of the doubly degener&atenodes into
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large inter-tube distance. Due to the long-range electrostatic
interactions between the tubes, the shift decreases very slowly
as a function of inter-tube distance. For incidence of the laser
light perpendicular to the tube axis, it is the, modes that
experience a splitting in frequency. While dll;, modes are
slightly affected, it is the%; (T) mode of Fig. 8 that experiences
the relatively strong splitting of approximately 90 chin

the closely packed array and 40 chin the array with large
inter-tube distance. It can be seen from Fig. 8 that all B atoms
are moving parallel and the N atoms likewise. This makes it
a longitudinal optical mode in the macroscopic array of tubes
with the laser light incident in the direction of oscillation.
In anisotropic polar systems, such as h-BN, the directional
dependence of the LO-TO splitting has been used for angular
Fig.8. High-frequency tangenti&l, mode in a closely packed array@, 0)  resolved STS (ellipsometry) [4]. Due to the variety of modes,
BN nanotubes. macroscopic arrays of BN nanotubes promise to be an even
richer playground for angular resolved IR spectroscopy.

two modes with slightly different frequencies. Most phonon
modes (except for the lowesh, mode) are softened, contrary VI. CONCLUSION

to.the _observations in C nanotubes, where, on average, a sliglgince BN nanotubes can now be produced in macroscopic
sr?fferlnng of the modes ;vag observed [43], [44]. Apparently; o gramy quantities, Raman and IR spectroscopy will very
the electrostatic Inter-tube interaction acts, on average, asIiﬂ@ly develop into standard tools for characterization of the

attractive force, which counteracts the hardening of phonofig,eq according to diameter, length, and chirality. The charac-

that would take place if only the repulsion caused by the bFérization requires accurate data on the vibrational properties

ginning inter-tube overlap of the wave functions would mOdi%f the tubes. We have presentell initio calculations of the
the frequen(iy: The effect, however, is weak gnd does not efionon frequencies as a function of tube diameter and tube chi-
peed 10 cm in mpst cases. A hotable exception to. the we lity. The phonon modes display a very close similarity to the
influence .Of b_undlmg is the high-frequency tgngenﬂa_l @) phonon modes in carbon tubes. However, due to the reduced
”?Ode’ .Wh'.Ch IS softene_d by almost 50 thn This mode is de- rod group symmetry, more modes are Raman and IR active. We
p|gted n !:'g‘ 8. Atthe d|§tance of the closest approach betwer?é\/e discussed possible deviations from the phonon frequencies
neighboring tubes, qulvalent atoms are locally moving, as W iqeal, isolated, and infinitely long tubes in realistic samples
“.’VO parallel planeg. Th's, softens the mode and makes it SUSCEPBN tubes. The finite length of the tube (typically shorter than
tible to LO-TO splitting in macroscopically extended nanotu e wavelength of IR light) leads to a reduction of the tube sym-
arrays, as s_hown below. In C nanotubes, whe_r e the EIG_CtrOStm@try and thereby to additional active modes. The Raman and
mtgracnon IS gbsent, this, modes do not experience adﬁferen‘R intensity of these modes might serve as an indicator for the
shift by bundling .than thel and E; modes. o . average length of the measured tubes. An important difference
In macroscopic polar crys?als_, the Ic_)ng|tud|nal Opt'cé’l‘/ith respect to carbon tubes is the polarity of BN. In large ar-
phonons give rise to an (_el(_ectnc field, which leads to a Sh'Jéys of closely packed tubes, the polarity leads to a coupling of
in frequency and to_ a splitting of _de_.'generate LO-TO mOd%ngitudinal optical modes with the internal electric field. The
For bulkl h'BN:‘ this LO_T? _spht_tmg amounts to almos orresponding frequency shift of these modes depends on the di-
2.00 cm ([6]). Ma‘(‘:rosco;?,uf in this contt_axt means that therection of the incoming light and the average distance between
dimensions of the “crystal n all three dlrect!ons are'large.tlhe tubes. The richness of predicted phonon frequencies gives
than the wavelength of the interacting laser light. While this, 5 ihe hope that, in the future, large samples of clean and

is certainly not the case for nanotube bundles containing on ll-aligned samples can be produced and spectroscopically in-
tens of nanotubes, it is conceivable that, in the near fuwéffestigated

better purification and alignment methods lead to large periodic
arrays of nanotubes. In this case, the effect of coupling to
the E-field will become important for the LO modes. In the
following, LO always denotes longitudinal with respect to the The authors acknowledge stimulating discussions with
wave vector of the interacting laser light. Even though the ek- Mauri, M. Lazzeri, R. Arenal de la Concha, and A. Loiseau.
cited phonons close 0 carry approximately zero momentum,The authors are particularly grateful to O. Alon for his expla-
it does play a role from which direction the limit — 0 is nations on the symmetry analysis of nanotubes and for careful
taken. Table Il demonstrates that, for the laser light paralle#ading of the manuscript. A portion of this paper’s calculations
to the tube axis, thel; modes experience a shift. In the caswas performed at CEPBA, Barcelona, Spain.

of the radial breathing and buckling modes, the shift is weak.
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ACKNOWLEDGMENT



348

(2]

(3]

4

(5]

(6]

(7]

(8]

El

(20]

(11]

(12]

(23]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 2, NO. 4, DECEMBER 2003

D. M. Hoffmann, G. L. Doll, and P. C. Eklund, “Optical properties of [23]
pyrolitic boron nitride in the energy range 0.05-10 eNfys. Rev. B,
Condens. Mattervol. 30, pp. 6051-6056, Nov. 1984.

X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, “Quasiparticle band
structure of bulk hexagonal boron nitride and related systeRisys.
Rev. B, Condens. Mattevol. 51, pp. 6868—6875, Mar. 1995.

M. Schubert, B. Rheinlander, E. Franke, H. Neumann, T. E. Tiwald,[25]
J. A. Woollam, J. Hahn, and F. Richter, “Infrared optical properties of
mixed-phase thin films studied by spectroscopic ellipsometry using
boron nitride as an examplePhys. Rev. B, Condens. Mattewl. 56,

pp. 13306-13 313, Nov. 1997.

E. Rokuta, Y. Hasagawa, K. Suzuki, Y. Gamou, C. Oshima, and
A. Nashima, “Phonon dispersion of an epitaxial monolayer filim of [27]
hexagonal boron nitride on Ni11),” Phys. Rev. Lett.vol. 79, pp.

(24]

(26]

4609-4612, Dec. 1997. [28]
G. Kern, G. Kresse, and J. HafneAl initio calculation of the lattice
dynamics and phase diagram of boron nitridetiys. Rev. B, Condens. [29]
Matter, vol. 59, pp. 8551-8559, Apr. 1999.

A. Rubio, J. L. Corkill, and M. L. Cohen, “Theory of graphitic boron ni-

tride nanotubesPhys. Rev. B, Condens. Matteol. 49, pp. 5081-5084, [30]

Feb. 1994.
X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, “Stability and band [31]
gap constancy of boron nitride nanotubesitophys. Lett.vol. 28, pp.

335-340, Nov. 1994. [32]
N. G. Chopra, J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G.
Louie, and A. Zettl, “Boron nitride nanotubesStiencevol. 269, pp.
966-967, Aug. 1995. [33]

A. Loiseau, F. Willaime, N. Demoncy, G. Hung, and H. Pascard, “Boron
nitride nanotubes with reduced numbers of layers synthesized by arc
discharge,’Phys. Rev. Lettvol. 76, pp. 4737-4740, June 1996. [34]
D.P.Yu,X.S.Sun,C.S. Lee, |.Bello, S. T. Lee, H. D. Gu, K. M. Leung,
G. W. Zhou, Z. F. Dong, and Z. Zhang, “Synthesis of boron nitride nan-
otubes by means of excimer laser ablation at high temperatdpgal.
Phys. Lett.vol. 72, pp. 1966-1968, Apr. 1998.

D. Goldberg, Y. Bando, W. Han, K. Kurashima, and T. Sato, “Single-
walled B-doped carbon, B/N-doped carbon and BN nanotubes synthe-
sized from single-walled carbon nanotubes through a substitution read36]
tion,” Chem. Phys. Lettvol. 308, pp. 337—-342, July 1999.

Y.Chen, J. F. Gerald, J. S. Williams, and S. Bulcock, “Synthesis of boron
nitride nanotubes at low temperatures using reactive ball milli@gem. [37]
Phys. Lett.vol. 299, pp. 260-264, Jan. 1999.

J. Cummings and A. Zettl, “Mass-production of boron nitride [38]
double-wall nanotubes and nanococoor@iem. Phys. Leftvol. 316,

pp. 211-216, Jan. 2000.

T. Laude, Y. Matsui, A. Marraud, and B. Jouffrey, “Long ropes of boron [39]
nitride nanotubes grown by a continuous laser heatidgpl. Phys.
Lett, vol. 76, pp. 3239-3241, May 2000.

E. Bengu and L. D. Marks, “Single-walled BN nanostructurdhys.
Rev. Lett.vol. 86, pp. 2385-2387, Mar. 2001.

R. S. Lee, J. Gavillet, M. L. de la Chapelle, A. Loiseau, J.-L. Cochon,
D. Pigache, J. Thibault, and F. Willaime, “Catalyst-free synthesis of
boron nitride single-wall nanotubes with a preferred zigzag configura-[41]
tion,” Phys. Rev. B, Condens. Mattepl. 64, Sept. 2001.

L. C. Venema, J. W. Janssen, M. R. Buitelaar, J. W. G. Wildoer, S. G.
Lemay, L. P. Kouwenhoven, and C. Dekker, “Spatially resolved scannind42]
tunneling spectroscopy on single-walled carbon nanotulf¥g/s. Rev.

B, Condens. Mattewol. 62, pp. 5238-5244, Aug. 2000.

G. G. Fuentes, E. Borowiak-Palen, T. Pichler, X. Liu, A. Graff, G. Behr, [43]
R. J. Kalenczuk, M. Knuper, and J. Fink, “Electronic structure of mul-
tiwall boron nitride nanotubesPhys. Rev. B, Condens. Matteol. 67,
Jan. 2003.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley,
and R. B. Weisman, “Structure-assigned optical spectra of single-walled
carbon nanotubesScienevol. 298, pp. 2361-2366, Nov. 2003.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A.
Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E.
Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter—selectf’_ve
Raman scattering from vibrational modes in carbon nanotubes;
Sciencevol. 275, pp. 187-191, Jan. 1997.

R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus,
“Raman intensity of single-wall carbon nanotubeBliys. Rev. B, Con-
dens. Mattervol. 57, pp. 4145-4153, Feb. 1998.

(35]

[40]

(44]

R. A.delaConcha, L. Wirtz, J.-Y. Mevellec, S. Lefrant, A. Loiseau, and
A. Rubio, . unpublished.

E. Borowiak-Palen, T. Pichler, G. G. Fuentes, B. Bendjemil, X. Liu, A.
Graff, G. Behr, R. J. Kalenczuk, M. Knupfer, and J. Fink, “Infrared re-
sponse of multiwalled boron nitride nanotube€fiem. Communpp.
82-83, 2003.

U. Kuhlmann, H. Jontoljak, N. Pfander, P. Bernier, C. Journet, and C.
Thomsen, “Infrared active phonons in single-walled carbon nanotubes,”
Chem. Phys. Lettvol. 294, pp. 237-240, Sept. 1998.

L. Wirtz, A. Rubio, R. A. de la Concha, and A. Loiseaé initio cal-
culations of the lattice dynamics of boron nitride nanotubB&ys. Rev.

B, Condens. Mattewol. 68, July 2003.

O. E. Alon, “Symmetry properties of single-walled boron nitride nan-
otubes,”Phys. Rev. B, Condens. Matteol. 64, Oct. 2001.

M. Damnjanovig T. Vukovic, I. MiloSevic, and B. Nikolig “Symmetry

of single-wall nanotubesAct. Cryst, vol. A57, pp. 304-310, 2001.

O. E. Alon, “From spatial symmetry to vibrational spectroscopy of
single-walled nanotubes,J. Phys., Condens. Mattewol. 15, pp.
2489-2500, Sept. 2003, to be published.

N. W. Ashcroft and N. D. MerminSolid State Physics Orlando, FL:
Saunders College, 1976.

R. Saito, G. Dresselhaus, and M. S. Dresselh@hgsical Properties of
Carbon Nanotubes London, U.K.: Imperial College Press, 1998.

R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus,
“Phonon modes in carbon nanotubule€hem. Phys. Lettvol. 209,

pp. 77-82, June 1993.

O. Dubay and G. Kresse, “Accurate density functional calculations for
the phonon dispersion relations of graphite layer and carbon nanotubes,”
Phys. Rev. B, Condens. Matteol. 67, Jan. 2003.

J. Yu, R. K. Kalia, and P. Vashishta, “Phonons in graphitic tubules: A
tight-binding molecular dynamics study]’ Chem. Physvol. 103, pp.
6697-6705, Oct. 1995.

D. Sanchez-Portal, E. Artacho, J. M. Soler, A. Rubio, and P. Ordején,
“Ab initio structural, elastic, and vibrational properties of carbon nan-
otubes,’Phys. Rev. B, Condens. Matteol. 59, pp. 12 678-12 688, May
1999.

D. Séanchez-Portal and E. Hernandez, “Vibrational properties of
single-wall nanotubes and monolayers of hexagonal Biy's. Rev. B,
Condens. Mattervol. 66, Dec. 2002.

V. N. Popov, “Lattice dynamics of single-walled boron nitride nan-
otubes,Phys. Rev. B, Condens. Mattgol. 67, pp. ???7—???, Feb. 2003.
N. Troullier and J. L. Martins, “Efficient pseudopotentials for
plane-wave calculationsPhys. Rev. B, Condens. Matteol. 43, pp.
1993-2006, Jan. 1991.

S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and
related crystal properties from density-functional perturbation theory,”
Rev. Mod. Physvol. 73, pp. 515-562, Apr. 2001.

X. Gonze and C. Lee, “Dynamical matrices, born effective charges, di-
electric permittivity tensors, and interatomic force constants from den-
sity-functional perturbation theoryPhys. Rev. B, Condens. Mattgol.

55, pp. 10 355-10 368, Apr. 1997.

W. Kohn and L. J. Sham, “Self-consistent equations including exchange
and correlation effectsPhys. Rey.vol. 140, pp. A1133-A1138, Nov.
1965.

G. Seifert, P. W. Fowler, D. Mitchell, D. Porezag, and T. Frauenheim,
“Boron-nitrogen analogues of the fullerenes: Electronic and structural
properties,"Chem. Phys. Lettvol. 268, pp. 352—-358, Apr. 1997.

D. Kahn and J. P. Lu, “Vibrational modes of carbon nanotubes and
nanoropes,’Phys. Rev. B, Condens. Matteml. 60, pp. 6535-6540,
Sept. 1999.

L. Henrard, E. Hernandez, P. Bernier, and A. Rubio, “Van der Waals
interaction in nanotube bundles: Consequences on vibrational modes,”
Phys. Rev. B, Condens. Matteol. 60, pp. 8521-8524, Sept. 1999.

Lidger Wirtz , photograph and biography not available at time of publication.

Angel Rubio, photograph and biography not available at time of publication.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


