Quantitative description of coherent transport through surface-disordered wires

Jörg Doppler1, Otto Dietz2,3, José A. Méndez-Bermúdez4, Johannes Feist5, Florian Libisch1, Dmitry O. Krimer1, Nykolay M. Makarov6, Felix M. Izrailev4, Hans-Jürgen Stöckmann5, Ulrich Kuhl1,2 and Stefan Rotter2
1Institute for Theoretical Physics, Vienna University of Technology, Vienna, Austria, EU
2Fachbereich Physik, Philipps-Universität Marburg, Germany, EU
3Institut für Physik, Humboldt-Universität zu Berlin, Germany, EU
4Instituto de Física & Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
5ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, USA
6LPMC, CNRS UMR 7336, Université de Nice Sophia-Antipolis, Nice, France, EU

• Transport from mode n to n’ determined by partial attenuation length

\[L_{\text{att}} = \sum_{n=1}^{N} \frac{1}{|\lambda_n|} \left[W(k_n + k_{n'}) + W(k_n - k_{n'}) \right] \]

• Amplitude-gradient scattering (AGS)

\[W(k) = \left(F_k \xi^n(x) \right)^2 \]

• Square-gradient scattering (SSG)

\[S(k) = \left(F_k \xi^n(x)^2 \right)^2 \]

Rough boundary systems relevant in many physical systems

Optical fibres [2]
Quantitatively bound neutrons [3]
Graphene nanoribbons (4)
Silicon nanowires [5]

Surface scattering theory (SST) [6]

• Theoretical predicted new scattering mechanism

Step boundary analytically modelled by 2N+1 smeared out steps \(\Pi_n(x) \) featuring random heights \(z_n \):

\[\eta(x) = \sum_{n=1}^{N} a_n \eta_n(x) \]

Limited wave resolution causes smearing \(\propto p \)

\[W(k_n) = \frac{2}{\pi} \frac{4 e^{i \pi}}{\sin^2(\pi k_n \Delta / 2)} \]

\[S(k_n) = \frac{1}{2} \frac{4 e^{i \pi}}{\sin(2 \pi k_n \Delta)} \]

\[\Omega_n(x) = \frac{1}{2} \left(1 + \frac{1}{2 \pi} \right) \left(1 + 2 \cos(x) + \frac{1}{2} \sin^2 \left(\frac{\pi x}{2} \right) \right) \]

Resonance condition for specific parameter pairings:

\[k_x \Delta = 2\pi M \quad \Rightarrow \quad W(k_x) \rightarrow 0 \quad S(k_x) \propto N \]

Numerical results

• Two open modes
• Scan through different step-widths \(\Delta \)
• Three symmetry classes:

- Symmetric wire
- Antisymmetric wire
- Nonsymmetric wire

- Standard SST [6] fails to reproduce behaviour of first mode
- Explanation: backscattering increased due to mode mixing by forward scattering
- Corrections via effective higher order scattering contributions to the attenuation length

- Direct application of higher order scattering terms:
- Quantitative agreement also in this case

Designing transmission bandgaps [8]

Summary

- Quantitative agreement between numerics and theoretically predicted new scattering mechanism
- Step-like wire geometry:
 - Pronounced backscattering peaks at resonant points \(k_x \Delta = 2\pi M \)
 - Effective higher-order scattering corrections improve agreement
- Waveguide design to fabricate predetermined transmission bandgaps
- Successful demonstration in microwave experiments and numerical simulations

References

Acknowledgements

J.D., F.L., and S.R. acknowledge support by the WWTF and FWF as well as computational resources by the Vienna Scientific Cluster (VSC). J.F. acknowledges support by the NSF through a grant to ITAMP. Support of the DFG is acknowledged by O.D., H.-J.S., and U.K. F.M.I., N.M.M. and J.A.M.-B. acknowledge the support of SEP-CONACyT (Mexico) and of the VIEF-BUAP.

Contact: joerg.doppler@tuwien.ac.at

[Diagram showing waveguide design and microwave experiments, with theoretical and experimental values for AGS and SSG graphs, and SGS graphs with theory and experiment.]