Decreasing excitation gap in Andreev billiards by disorder scattering

Florian Libisch1, Jürgen Möller1, Stefan Rotter2, Maxim Vavilov3 and Joachim Burgdörfer4

1Institute for Theoretical Physics, TU-Wien, A-1040 Vienna, Austria, EU
2Department of Applied Physics, Yale University, New Haven, CT 06520, USA
3Department of Physics, University of Wisconsin, Madison, WI 53706, USA

Andreev billiards

Ballistic quantum billiard (N) in contact with a superconductor (S)

Andreev reflection \[1\] Normal reflection

Electron reflected back as hole

Periodic electron-hole orbits inbetween two Andreev reflections

Proper delay times

Eigenenergies of closed Andreev billiards \[4\]

$$\text{det}[1 + S(E)S^\dagger(-E)] = 0 \iff E = \frac{\hbar \pi}{2 \tau_{WS}}$$

$$\tau_{WS}:$$ Eigenvalues of the Wigner-Smith delay time matrix $Q = -i\hbar S^\dagger \partial_x S$ \[5\].

Lowest eigenenergy E_1 (gap size) determined by largest $E_{1,\tau_{WS}} \approx \frac{\hbar \pi}{2}$

WS delay time value τ_{WS}.

Mean delay time $\langle \tau \rangle$ unafected by disorder as predicted by \[6\].

Average dwell time $\langle \tau_0 \rangle$, \[6\].

Largest WS delay time predicts decreasing excitation gap quantitatively

Correlation between delay time and gap size

Increasing V_F

Correlation between maximal WS delay time value τ_{WS} and gap size

$E_1 = \frac{\hbar \pi}{2 \tau_{WS}}$

Gap size reduced by disorder

Mean delay time (dwell time) unrelated to gap

Correlation between maximum Wigner-Smith delay time and gap size

Strong disorder breaks correlation between maximum Wigner-Smith delay time and gap size

Wavefunctions

Clean system

Electron-hole wave functions lose mirror symmetry for increasing disorder

Disordered system

Excitation gap

Result for SN junctions \[3\]: Disorder shifts lowest eigenenergy E_1 away from Fermi energy

Correlated on-site disorder potential in N-region, characterized by

$$\langle V' \rangle = 0 \quad \sqrt{\langle V'^2 \rangle} = V_0 \quad l_{corr.} = 0.2 \lambda_F$$

No gap at $V_f = 0$.

Gap increases with increasing disorder!

Gap decreases with increasing disorder

Largest gap at $V_f = 0$.

RMT estimate for E_1

Conclusions

• Gap size reduced by disorder
• Mean delay time (dwell time) unrelated to gap
• Correlation between maximum Wigner-Smith delay time and gap size
• Strong disorder breaks correlation between maximum Wigner-Smith delay time and gap size

Future Projects

• Effects of dissipation and decoherence
• Time-dependent Andreev scattering
• Transport through open Andreev billiards

Acknowledgements

P. Brouwer, J. Feist, and V. A. Handara
FWF Austria Grant FWFP17359
Max Kade Foundation
W. M. Keck Foundation

References

Contact: florian@concord.itp.tuwien.ac.at